

R8000 SERIES COMMUNICATIONS SYSTEM ANALYZER

AUTOTUNE USER GUIDE

Harris XG-75 Portable Harris XG-75 Mobile

Astronics Test Systems 2002 Synergy Blvd, Suite 200 Kilgore, Texas 75662

Copyright © 2024 Astronics Test Systems All Rights Reserved Printed in U.S.A.

FCT-1368 Rev. B

AUTOTUNE™ SOFTWARE LICENSE AGREEMENT

The software license agreement governing use of the R8000 Series Communications System Analyzer AutoTune[™] software is located in FCT-1365 R8000 Series Communications System Analyzer Operator's Manual.

CREDITS

The Astronics Test Systems logo and Astronics Test Systems are registered ® trademarks of Astronics Test Systems, Inc.

Harris is a registered trademark of Harris Corporation.

OpenG License Copyright (c) 2002, Cal-Bay Systems, Inc. <info@calbay.com> Copyright (c) 2002, Jean-Pierre Drolet <drolet jp@hotmail.com> Copyright (c) 2002-2007, Jim Kring <jim@jimkring.com> Copyright (c) 2002-2005, Rolf Kalbermatter <rolf.kalbermatter@citeng.com> Copyright (c) 2003-2004, Paul F. Sullivan <Paul@SULLutions.com> Copyright (c) 2004, Enrique Vargas <vargas@visecurity.com> Copyright (c) 2004, Heiko Fettig <heiko.fettig@gmx.net> Copyright (c) 2004, Michael C. Ashe <michael.ashe@imaginatics.com> Copyright (c) 2005-2006, MKS Instruments, Inc., author: Doug Femec <doug_femec@mkinst.com>, IM dafemec Copyright (c) 2006. JKI <info@iameskring.com> Copyright (c) 2006, JKI <info@jameskring.com>; Authors: Jim Kring <jim@jimkring.com>, Philippe Guerit <pjm labview@yahoo.com> Copyright (c) 2007, JKI <info@jameskring.com> (Author: Jim Kring) <jim.kring@jameskring.com>) Copyright (c) 2008, Ton Plomp <t.c.plomp@gmail.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the SciWare, James Kring, Inc., nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MGI License Copyright (c) 2010-2013, Moore Good Ideas, inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of Moore Good Ideas, Inc., nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TABLE OF CONTENTS

1. Int	troduction	1			
2. So	2. Scope1				
3. Co	onventions	1			
3.1.	PPM	1			
3.2.	Rated Audio	1			
4. Im	portant Notes	1			
4.1.	Required firmware	1			
4.2.	Conventional channel selection	1			
4.3.	Supported models	2			
5. Ha	arris XG-75 Portable Radio Test Setup	3			
5.1.	Cable Sweep	3			
5.2.	Test Hardware	4			
5.3.	XG-75 Portable Test Setup	5			
6. Ha	arris XG-75 Portable Alignment and Test Descriptions	6			
6.1.	Reference Oscillator	7			
6.2.	TX Power	8			
6.3.	FM Deviation	10			
6.4.	Channel Guard Deviation and DCG Scalar Test	11			
6.5.	C4FM Deviation Test	12			
6.6.	P25 Phase 1 Tx Modulation (C4FM) Test	13			
6.7.	P25 Phase 2 Tx Modulation (TDMA) Test	14			
6.8.	TX Audio Sensitivity and Distortion	15			
6.9.	Rx Audio Level and Distortion	16			
6.10	. Squelch Open and Close	17			
6.11	. RSSI	19			
6.12	. RX Sensitivity (SINAD)	20			
6.13	. P25 Phase 1 Rx Sensitivity (C4FM) Test	21			
6.14	. P25 Phase 2 Rx Sensitivity (TDMA) Test	22			
6.15	. Rx IF Bandwidth – Signal Displacement Bandwidth Test	23			
7. Ha	arris XG-75 Mobile Radio Test Setup	24			
7.1.	Cable Sweep	24			
7.2.	Test Hardware	25			
7.3.	XG-75 Mobile Test Setup	25			
8. Ha	arris XG-75 Mobile Alignment and Test Descriptions	28			
8.1.	Reference Frequency	28			
8.2.	TX Power	30			
8.3.	Tx Modulation Limit	32			
8.4.	P25 Phase 1 Tx Modulation (C4FM) Test	33			
8.5.	P25 Phase 2 Tx Modulation (TDMA) Test	34			
8.6.	Rx Audio Level and Distortion	35			
8.7.	RSSI	36			
8.8.	RX Sensitivity (SINAD)	37			

40
41
44
A-1
B-1
C-1

LIST OF FIGURES

Figure 5-1.	XG-75 Portable Test Setup Diagram	5
Figure 7-1.	XG-75 Mobile Front Mount Test Setup Diagram	26
Figure 7-2.	XG-75 Mobile Remote Mount Test Setup Diagram	27
Figure B-1.	Sample Test Result Report	B-3

LIST OF TABLES

Table 1. Required R8x00 options for AutoTune for Harris XG-75 series radios	2
Table 2. Pollable Test Hardware Table	4
Table 3. Analyzer Configuration for Reference Frequency	/
Table 4. Reference Frequency alignment results	/
Table 5. Reference Frequency test results	/
Table 6. Analyzer Configuration for TX Power	8
Table 7. TX Power alignment results	8
Table 8. TX Power test results	9
Table 9. Analyzer Configuration for FM Deviation test	.10
Table 10. FM Deviation test results	.10
Table 11. Analyzer Configuration for Channel Guard Deviation and DCG Scala	۱ r
test	.11
Table 12. Channel Guard Deviation and DCG Scalar test results	.11
Table 13. Analyzer Configuration for C4FM Deviation test	.12
Table 14. C4FM Deviation test results	.12
Table 15. Analyzer Configuration for P25 Phase 1 Tx Modulation (C4FM) test	.13
Table 16. P25 Phase 1 Tx Modulation (C4FM) test results	.13
Table 17. Analyzer Configuration for P25 Phase 2 Tx Modulation (TDMA) test .	.14
Table 18. P25 Phase 2 Tx Modulation (TDMA) test results	.14
Table 19. Analyzer Configuration for TX Audio Sensitivity and Distortion test	.15
Table 20. Tx Audio Sensitivity and Distortion test results	.15
Table 21. Analyzer Configuration for Rx Audio Level and Distortion test	.16
Table 22. Rx Audio Level and Distortion test results	.16
Table 23. Analyzer Configuration for Squelch Open and Close alignment, test	.17
Table 24. Squelch Open and Close alignment results	.17
Table 25. Squelch Open and Close test results	.18
Table 26. Analyzer Configuration for RSSI alignment, test	.19
Table 27. RSSI alignment results	.19
Table 28. Analyzer Configuration for RX Sensitivity test	.20
Table 29. RX Sensitivity test results	.20
Table 30. Analyzer Configuration for P25 Phase 1 Rx Sensitivity (C4FM) test	.21
Table 31. P25 Phase 1 Rx Sensitivity (C4FM) test results	.21
Table 32. Analyzer Configuration for P25 Phase 2 Rx Sensitivity (TDMA) test	.22
Table 33. P25 Phase 2 Rx Sensitivity (TDMA) test results	.22
Table 34. Analyzer Configuration for Rx IF Bandwidth – Signal Displacement	
Bandwidth test	.23
Table 35, Rx IF Bandwidth – Signal Displacement Bandwidth test results	.23
Table 36. Portable Test Hardware Table	25
Table 37 Analyzer Configuration for Reference Frequency	28
Table 38. Reference Frequency alignment results	.28
Table 39 Reference Frequency test results	29
Table 40 Analyzer Configuration for TX Power	30
Table 41 TX Power alignment results	30
	.00

Table 42. TX Power test results	.31
Table 43. Analyzer Configuration for Tx Modulation Limit test	.32
Table 44. Tx Modulation Limit test results	.32
Table 45. Analyzer Configuration for P25 Phase 1 Tx Modulation (C4FM) test	.33
Table 46. P25 Phase 1 Tx Modulation (C4FM) test results	.33
Table 47. Analyzer Configuration for P25 Phase 2 Tx Modulation (TDMA) test .	.34
Table 48. P25 Phase 2 Tx Modulation (TDMA) test results	.34
Table 49. Analyzer Configuration for Rx Audio Level and Distortion test	.35
Table 50. Rx Audio Level and Distortion test results	.35
Table 51. Analyzer Configuration for RSSI alignment, test	.36
Table 52. RSSI alignment results	.36
Table 53. Analyzer Configuration for RX Sensitivity test	.37
Table 54. RX Sensitivity test results	.37
Table 55. Analyzer Configuration for Squelch Open and Close alignment, test	.38
Table 56. Squelch Open and Close alignment results	.38
Table 57. Squelch Open and Close test results	.39
Table 58. Analyzer Configuration for P25 Phase 1 Rx Sensitivity (C4FM) test	.40
Table 59. P25 Phase 1 Rx Sensitivity (C4FM) test results	.40
Table 60. Analyzer Configuration for P25 Phase 2 Rx Sensitivity (TDMA) test	.41
Table 61. P25 Phase 2 Rx Sensitivity (TDMA) test results	.41
Table 62. Harris XG-75 Series Troubleshooting Chart	.43
Table A-1. Default Harris XG-75 Portable Limits	4-4
Table A-2. Default Harris XG-75 Mobile Limits	4-7

1. Introduction

The Astronics Test Systems R8000 Series Communications System Analyzer AutoTune[™] (hereafter "AutoTune") provides an automated test and alignment solution for supported two-way radios.

2. Scope

This document includes information regarding the tests and alignments performed for supported radios by AutoTune. This document is restricted to radio-specific information for Harris XG-75 Portable and XG-75 Mobile series radios.

Please refer to the R8100 Series Communications System Analyzer Owner's Manual (FCT-1382) for an overview and basic operating instructions for AutoTune itself.

3. Conventions

3.1. PPM

"ppm" is "parts per million". This specification is generally limited to frequency-related measurements. If the frequency units are in MHz, then the ppm specification is in Hz. For example, a 169.075 MHz frequency with a \pm 1.5 ppm specification is allowed to vary by 1.5 * 169.075 MHz, or about \pm 254 Hz.

3.2. Rated Audio

Rated audio voltage target is $2 \ V_{RMS}$ for portable models and $7.745 \ V_{RMS}$ for mobile models.

4. Important Notes

4.1. Required firmware

All Harris XG-75 series radios must be running **XGP** or **XLP** firmware for AutoTune to successfully service them. Older ECP firmware is not currently supported. Contact Harris Technical Assistance Center (TAC) for information on acquiring XGP firmware.

4.2. Conventional channel selection

The radio must have a conventional channel selected before AutoTune servicing begins. A trunked channel if selected is known to cause radio communication initialization failures.

4.3. Supported models

The following Harris XG-75 series models are supported by AutoTune:

- P7300
- XG-75
- XG-75P
- XG-75Pe
- M7300
- XG-75M

4.4. Required Options

Option Name	Reason
Harris XG-75 (R8-AT_XG75)	Harris XG-75 AutoTune
P25 Conventional Test Mode (R8-P25)	Used to perform P25 Rx BER (C4FM)
	tests.
P25 Phase 2 Test Mode (R8-P25_II)	Used to perform P25 Rx BER (TDMA)
	tests.

 Table 1. Required R8x00 options for AutoTune for Harris XG-75 series radios.

5. Harris XG-75 Portable Radio Test Setup

Before servicing a radio with AutoTune, ensure the analyzer is running the current system software version. Each system version release contains issue resolutions and/or new/enhanced features.

- On the analyzer, navigate to Settings > About... Note the System version shown.
- Browse to the Astronics Test Systems software upgrades webpage: <u>https://freedomcte.com/upgrades/</u>
- If the first Current System Version shown on the webpage is more recent than the analyzer System version, follow the webpage instructions to download and apply the current system version software to your analyzer.

To perform test and alignment procedures, the XG-75 Portable radio must be connected to the R8000 Communications System Analyzer as shown in the figure below.

Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform an alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

5.1. Cable Sweep

Every RF cable connected between a radio under test and the analyzer attenuates the signal propagating through it. The amount of attenuation varies by several factors such as operating frequency, cable length, and cable type. Ensuring this attenuation is accounted for by the analyzer is important to the accuracy of several tests and alignments, primarily power tests.

Sweep the RF cable used between the Radio and Analyzer, label the RF cable with the stored cable sweep name, and enable the Cable Sweep feature in the analyzer System, System Settings... menu. Refer to <u>Application Note FCT-1017</u> Utilizing Cable Sweep for instructions on how to perform a cable sweep.

5.2. Test Hardware

Test Aid	Recommended part	Description
USB radio programming cable	Astronics part# TTL- 232RG-VSW3V3- WE_M	USB to TTL cable for programming and servicing radio.
Variable DC power supply	Astron VS-50M	DC power supply with sufficient current sourcing capacity.
Battery eliminator	Harris part# BT- 023406-015	Interfaces portable radio to DC power supply.
RF test cable (Type N to BNC)	Megaphase RF Orange series	Shielded RF cable with low loss.
Antenna adapter	Harris part# 19B801496G2	RF adapter for radio antenna to BNC connector.
Reference cable	Pomona 5697	BNC cable for sweeping RF test cable.
6 dB attenuator	Mini-Circuits 15542	Attenuator for reducing Reference cable VSWR.
Audio cables	Pomona 5697	Connects analyzer and portable test set for audio signals.
Portable test box	Harris MATQ-03424 Test Box	Routes signals between radio and analyzer for Rx audio and microphone tests and for data communication.
Audio test cable	Harris part# CA- 023407-002	Routes signal between radio and Portable Test Box for Rx audio and data communication.

Table 2. Portable Test Hardware Table

5.2.1. Battery Eliminator

Battery eliminators interface portable radios to DC power supplies. They're needed because batteries cannot produce consistent voltage/current when the radio is keyed for extended time periods, as it will be during an alignment. Attempting to use even a nominally good battery will eventually result in power alignment failures. A battery eliminator should always be used while performing portable radio alignments and tests with AutoTune to achieve consistent alignment performance.

For XG-75 Portable radio models, use the following Harris battery eliminator part. For more information, refer to the applicable Harris radio maintenance manual.

• Part Number: BT-023406-015

5.3. XG-75 Portable Test Setup

Refer to the diagram below for the proper test setup. Note that the Test Box Device # knob should be set to position **7** as shown.

Note: Parts numbers shown in the diagram are available from Astronics Test Systems.

Figure 5-1. XG-75 Portable Test Setup Diagram

6. Harris XG-75 Portable Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency. Test Frequencies are band- and mode -specific. A table of the frequencies used by each band may be found in the respective Harris radio service manual.

Note: All analyzer Mode settings are Standard unless otherwise indicated.

6.1. Reference Oscillator

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB
Table 2 Analy	on Configuration	n far Deference Free		

 Table 3. Analyzer Configuration for Reference Frequency

6.1.1. Alignment

The radio is placed into Test Mode at a Tx Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit.
Frequency	Test Frequency
Freq Error	Measured frequency error
Min Limit	Minimum Limit (inclusive) for frequency error alignment
Max Limit	Maximum Limit (inclusive) for frequency error alignment
Old Softpot	Radio softpot before alignment
New Softpot	Radio softpot after alignment

 Table 4. Reference Frequency alignment results

6.1.2. Test

The radio is placed into Test Mode at a Tx Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

equency Error within Max Limit, Min Limit.
ency error
(inclusive) for frequency error
(inclusive) for frequency error
oducing the Freq Error

Table 5. Reference Frequency test results

6.2. TX Power

Note: For more information on Power Control and Power Sense softpots, see Harris radio maintenance manuals.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB
Table C. Analy	-on Configuration	n fan TV Dawan		

Table 6. Analyzer Configuration for TX Power

6.2.1. Alignment

The TX Power alignment aligns the power output level of the radio at Low, Mid, and High power levels. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency and the Low, Mid, and High power settings in turn. For each test frequency, the output level is measured and then adjusted until near to a band-specific output level defined by the respective Harris XG-75 Portable radio service manuals. See APPENDIX A for test limits used.

Name	Description
Result	Pass or Fail. Power Out within manufacturer limits
Power Level	Power setting under alignment (Low, Mid, High)
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out
Old Pwr Cntl	Original radio Power Control softpot setting before alignment.
New Pwr Cntl	Radio Power Control softpot setting after alignment.
Old Pwr Sens	Radio Power Sense softpot setting before alignment.
New Pwr Sens	Radio Power Sense softpot setting after alignment.

Table 7. TX Power alignment results

6.2.2. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the first Tx Test Frequency, the output level is measured at each TX Test Frequency, for Low, Mid, and High Power, and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Power Level	Power setting under test (Low, Mid, High)
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out
Power Control	Radio Power Control softpot setting which yields Power Out
Power Sense	Radio Power Sense softpot setting which yields Power Out

Table 8. TX Power test results

6.3. FM Deviation

The FM Deviation test measures the "compensation factors used to maintain consistent modulation characteristics across the radio's bandsplit."

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg	
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	+/-Peak / 2	
Table 9. Analyzer Configuration for FM Deviation test						

. .

6.3.1. FM Deviation Test

The radio is placed into Test Mode at low power at the first TX Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the \pm Peak/2-averaged deviation of this tone is measured with the analyzer. This test is performed for each bandwidth mode (Wideband, NPSPAC (if applicable), and Narrowband) and each Tx Test Frequency. The test results for each Tx Test Frequency are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is less than or equal to Max Limit.
Frequency	Test Frequency
Deviation	Measured maximum deviation level
Min Limit	Minimum passable deviation level
Max Limit	Maximum passable deviation level

Table 10. FM Deviation test results

6.4. Channel Guard Deviation and DCG Scalar Test

The Channel Guard Deviation and DCG Scalar test measures the "compensation factors used to maintain consistent modulation characteristics for Tone and Digital Channel Guard operation."

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	+/-Peak / 2
Table 11. Analyzer Configuration for Channel Guard Deviation and DCG Scalar test					

6.4.1. Channel Guard Deviation and DCG Scalar Test

The radio is placed into Test Mode at low power at the first TX Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the ±Peak/2-averaged deviation of this tone is measured with the analyzer. This test is performed for each bandwidth mode (Wideband TCG, NPSPAC TCG (if applicable), Narrowband TCG, and Wideband DCG) and each Tx Test Frequency. The test results for each Tx Test Frequency are written to the log file.

Description
Pass or Fail. Deviation is between Min Limit and Max Limit.
Test Frequency
Measured deviation level
Minimum passable deviation level
Maximum passable deviation level

 Table 12. Channel Guard Deviation and DCG Scalar test results

6.5. C4FM Deviation Test

The C4FM Deviation test measures the compensation factors used to maintain consistent modulation characteristics for C4FM digital operation.

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg	
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	Pwr-Weight	
Table 13. Analyzer Configuration for C4FM Deviation test						

6.5.1. C4FM Deviation Test

The radio is placed into Test Mode at low power at the first TX Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the Power-Weight-averaged deviation of this tone is measured with the analyzer. This test is performed for the C4FM bandwidth mode and each Tx Test Frequency. The test results for each Tx Test Frequency are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is between Min Limit and Max Limit.
Frequency	Test Frequency
Deviation	Measured C4FM deviation level
Min Limit	Minimum passable deviation level
Max Limit	Maximum passable deviation level

 Table 14. C4FM Deviation test results

6.6. P25 Phase 1 Tx Modulation (C4FM) Test

The P25 Phase 1 Tx Modulation (C4FM) test measures the radio's P25 Phase 1 C4FM modulation level at a specific test frequency.

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	Peak Avg
Table 15. Analyzer Configuration for P25 Phase 1 Tx Modulation (C4FM) test					

6.6.1. P25 Phase 1 Tx Modulation (C4FM) Test

The radio is placed into Test Mode at low power at the last Tx Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the Peak-averaged deviation of this tone is measured with the analyzer. This test is performed at a single Tx Test Frequency. The test results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is between Min Limit and Max Limit.
Frequency	Test Frequency
Measured Dev	Measured P25 Phase 1 C4FM deviation
Min Limit	Minimum passable deviation level
Max Limit	Maximum passable deviation level

Table 16. P25 Phase 1 Tx Modulation (C4FM) test results

6.7. P25 Phase 2 Tx Modulation (TDMA) Test

The P25 Phase 2 Tx Modulation (TDMA) test measures the radio's P25 Phase 2 TDMA modulation level at a specific test frequency.

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	+/-Peak / 2
Table 17. Analyzer Configuration for P25 Phase 2 Tx Modulation (TDMA) test					

6.7.1. P25 Phase 2 Tx Modulation (TDMA) Test

The radio is placed into Test Mode at low power at the last Tx Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the +/-Peak / 2-averaged deviation of this tone is measured with the analyzer. This test is performed at a single Tx Test Frequency. The test results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is between Min Limit and Max Limit.
Frequency	Test Frequency
Measured Dev	Measured P25 Phase 2 TDMA deviation
Min Limit	Minimum passable deviation level
Max Limit	Maximum passable deviation level

Table 18. P25 Phase 2 Tx Modulation (TDMA) test results

6.8. TX Audio Sensitivity and Distortion

Tx Audio Sensitivity and Distortion test verifies the transmitter audio distortion is at an appropriate level.

RF Control	Port	Frequency	Modulation	Attenuation		
Monitor	RF IN/OUT	Test Frequency	FM	30 dB		
Table 19. Analyzer Configuration for TX Audio Sensitivity and Distortion test						

6.8.1. TX Audio Sensitivity and Distortion Test

The radio is placed into Test Mode at Wide bandwidth and highest Tx Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the audio distortion of the radio's modulated signal is measured with the analyzer. The distortion is compared against test limits and written to the log file.

Name	Description
Result	Pass or Fail. Distortion is less than or equal to Max Limit.
Frequency	Test Frequency
Audio Level	Audio tone voltage level generated by the analyzer
Distortion	Measured distortion percentage
Max Limit	Maximum passable deviation (inclusive)

Table 20. Tx Audio Sensitivity and Distortion test results

6.9. Rx Audio Level and Distortion

Rx Audio Level and Distortion test verifies the receiver audio amplitude and distortion are at appropriate levels.

RF Control	Port	Frequency	Modulation	Output
Generate	RF IN/OUT	Test Frequency	FM	-47 dBm
Table 04. An always O and increation for Data the Lands and Distantion (ast				

Table 21. Analyzer Configuration for Rx Audio Level and Distortion test

6.9.1. RX Audio Level and Distortion Test

The radio is placed into Test Mode at Wide bandwidth and lowest Rx Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the audio voltage and distortion of the radio's demodulated signal is measured with the analyzer. Both the audio level and the distortion are compared against test limits and written to the log file.

Name	Description
Result	Pass or Fail. Distortion is less than or equal to Max Limit.
Frequency	Test Frequency
Min Limit	Minimum audio voltage level required to pass the test
Max Volume	Audio volume level generated by the radio at max volume setting
Mid Vol Dist	Measured distortion percentage at mid volume setting
Max Limit	Maximum passable distortion (inclusive)

 Table 22. Rx Audio Level and Distortion test results

6.10. Squelch Open and Close

Squelch Open and Close alignment verifies and modifies as necessary the squelch hysteresis so stronger RF signals are correctly received and weaker RF signals are correctly blocked.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	Bandwidth- and frequency-	Model-
			specific	specific
Table 00 Analysis Orafining (an Oraclah Orang and Olars all more state)				

Table 23. Analyzer Configuration for Squelch Open and Close alignment, test

6.10.1. Alignment

For each bandwidth mode (Narrowband, Wideband, NPSPAC, C4FM) and for each test frequency, the analyzer is setup to use the bandwidth- and test frequency-specific RF bandwidth and Fixed 1 kHz levels. The radio volume is then adjusted for Rated Audio. The radio is placed into Test Mode and the analyzer output level adjusted to -130 dBm. The analyzer output level is slowly increased until the radio unsquelches. The output level is then lowered until radio again squelches. SINAD is measured at the unsquelch point and the output levels between the unsquelch point and the squelch point are compared against test limits. If outside test limits, applicable softpots are updated and the alignment process is repeated. Once measurements are within test limits, the final results are written to the log file. This process is repeated for each bandwidth and each test frequency. Results are recorded to test log file.

Name	Description
Result	Pass or Fail. Pass if alignment completes within valid softpot range.
Frequency	Test Frequency
Min Sql Open	Minimum SINAD level at which unsquelch should occur
Open SINAD	SINAD level at which squelch opens
Max Sql Open	Maximum SINAD level at which unsquelch should occur
Min Hyst	Minimum hysteresis between squelch open output level and squelch
	close output level
Hysteresis	Difference between squelch open output level and squelch close output
	level
Max Hyst	Maximum hysteresis between squelch open output level and squelch
	close output level
Open Softpot	Radio softpot governing Squelch Open level.
Close Softpot	Radio softpot governing Squelch Close level.

Table 24. Squelch Open and Close alignment results

6.10.2. Test

For each bandwidth mode (Narrowband, Wideband, NPSPAC, C4FM) and for each test frequency, the analyzer is setup to use the bandwidth- and test frequency-specific RF bandwidth and Fixed 1 kHz levels. The radio volume is then adjusted for Rated Audio.

The radio is placed into Test Mode and the analyzer output level adjusted to -130 dBm. The analyzer output level is slowly increased until the radio unsquelches. The output level is then lowered until radio again squelches. SINAD is measured at the unsquelch point and the output levels between the unsquelch point and the squelch point are compared against test limits. If outside test limits, up to two measurement attempts are made to verify failure. Final results are written to the log file. This process is repeated for each bandwidth and each test frequency.

Name	Description
Result	Pass or Fail. Pass if alignment completes within valid softpot range.
Frequency	Test Frequency
Min Hyst	Minimum hysteresis between squelch open output level and squelch
	close output level
Hysteresis	Difference between squelch open output level and squelch close output
	level
Max Hyst	Maximum hysteresis between squelch open output level and squelch
	close output level
Open Softpot	Radio softpot governing Squelch Open level.
Close Softpot	Radio softpot governing Squelch Close level.

Table 25. Squelch Open and Close test results

6.11. RSSI

RSSI alignment and test verifies that varying levels of RF input power are accurately measured by the radio's receive signal strength indicator.

RF Control	Port	Frequency	Modulation	Output Level
Generate	RF IN/OUT	Test Freq	None	Various
Table 26. Analyzer Configuration for RSSI alignment, test				

6.11.1. Alignment

The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted to match the current RSSI output level. The radio RSSI level is requested and then the corresponding softpot applied to the radio. The final results are written to the log file. This process is repeated for each Rx Test Frequency and each RSSI level (Weak, Medium, and High).

Name	Description
Result	Pass or Fail. Pass if radio RSSI within target +/- tolerance
Frequency	Test Frequency
Weak Level +/-Tolerance	Measured Radio RSSI at weak input level
Weak Softpot	RSSI softpot associated with weak level
Medium Level +/-	Measured Radio RSSI medium input level
Tolerance	
Med Softpot	RSSI softpot associated with medium level
Strong Level +/-Tolerance	Measured Radio RSSI strong input level
Strong Softpot	RSSI softpot associated with strong level

Table 27. RSSI alignment results

6.11.2. Test

The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted to match the current RSSI output level. The radio RSSI level is requested from the radio. The final results are written to the log file. This process is repeated for each Rx Test Frequency and each RSSI level (Weak, Medium, and High). Test report format is identical to RSSI alignment.

6.12. RX Sensitivity (SINAD)

Rx Sensitivity (SINAD) test verifies the receiver analog audio sensitivity is at an appropriate level.

RF Control	Port	Frequency	Modulation	Output Level
Generate	RF IN/OUT	Test Freq	1 kHz @ 3 kHz	-60 dBm
Table 29. Analyzer Configuration for DV Constitutive toot				

Table 28. Analyzer Configuration for RX Sensitivity test

6.12.1. Test

The analyzer is setup by applying the Modulation signal in Table 28 to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at the first bandwidth and first RX Test Frequency. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file. This process is repeated for each bandwidth and each RX Test Frequency.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures about 12 dB
Max Limit	Maximum Limit (inclusive) for RX Sensitivity to Pass
Table 29 BX Sen	sitivity test results

Table 29. RX Sensitivity test results

6.13. P25 Phase 1 Rx Sensitivity (C4FM) Test

The P25 Phase 1 Rx Sensitivity (C4FM) test measures the radio's P25 Phase 1 C4FM sensitivity level at several Rx test frequencies.

RF Control	Port	Frequency	Modulation	Output Level
Generate	RF IN/OUT	Test Frequency	C4FM	-116 dBm
Table 30. Analyzer Configuration for P25 Phase 1 Rx Sensitivity (C4FM) test				

6.13.1. Test

The analyzer is setup by applying the Modulation signal in Table 30 to the radio. The radio is placed into Test Mode at the first bandwidth and first RX Test Frequency. The radio's reported BER level is measured and compared against test limits. The final results are written to the log file. This process is repeated for each Test Frequency.

Name	Description
Result	Pass or Fail. BER level within Max Limit
Frequency	Test Frequency
BER	Radio Bit Error Rate (BER) level
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass
Min Limit	Minimum Limit (exclusive) for Sensitivity (SINAD) to Pass

Table 31. P25 Phase 1 Rx Sensitivity (C4FM) test results

6.14. P25 Phase 2 Rx Sensitivity (TDMA) Test

The P25 Phase 2 Rx Sensitivity (TDMA) test measures the radio's P25 Phase 2 TDMA sensitivity level at several Rx test frequencies.

RF Control	Port	Frequency	Modulation	Output Level	
Generate	RF IN/OUT	Test Frequency	TDMA	-116 dBm	
Table 32. Analyzer Configuration for P25 Phase 2 Rx Sensitivity (TDMA) test					

6.14.1. Test

The analyzer is setup by applying the Modulation signal in Table 32 to the radio. The radio is placed into Test Mode at the first bandwidth and first RX Test Frequency. The radio's reported BER level is measured and compared against test limits. The final results are written to the log file. This process is repeated for each Test Frequency.

Name	Description
Result	Pass or Fail. BER level within Max Limit
Frequency	Test Frequency
BER	Radio Bit Error Rate (BER) level
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass
Min Limit	Minimum Limit (exclusive) for Sensitivity (SINAD) to Pass

Table 33. P25 Phase 2 Rx Sensitivity (TDMA) test results

6.15. Rx IF Bandwidth – Signal Displacement Bandwidth Test

The Rx IF Bandwidth – Signal Displacement Bandwidth test verifies the receiver adjacent channel selectivity is at an appropriate level.

RF Control	Port	Frequency	Modulation	Output Level	
Generate	RF IN/OUT	Test Frequency	1 kHz @ 3 kHz	-60 dBm	
Table 34. Analyzer Configuration for Rx IF Bandwidth – Signal Displacement Bandwidth test					

6.15.1. Test

The analyzer is setup by applying the Modulation signal in Table 34 to the radio. The radio is placed into Test Mode at the last RX Test Frequency. Radio volume control is set for mid-range. Adjust the output level until 12 dB SINAD is reached. Increase analyzer output level by 6 dBm. Slowly increase analyzer generate frequency until measured SINAD drops back to 12 dB. Starting from center frequency, slowly decrease analyzer generate frequency until measured SINAD drops back to 12 dB. Starting from sback to 12 dB. Compare against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. BER level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures about
	12 dB
Min Limit	Minimum Limit (inclusive) for Rx IF Bandwidth to Pass
Sig Disp BW	Measured signal displacement bandwidth
Min Limit	Minimum Limit (inclusive) for Rx IF Bandwidth to Pass

Table 35. Rx IF Bandwidth – Signal Displacement Bandwidth test results

7. Harris XG-75 Mobile Radio Test Setup

Before servicing a radio with AutoTune, ensure the analyzer is running the current system software version. Each system version release contains issue resolutions and/or new/enhanced features.

- On the analyzer, navigate to Settings > About... Note the System version shown.
- Browse to the Astronics Test Systems software upgrades webpage: <u>https://freedomcte.com/upgrades/</u>
- If the first Current System Version shown on the webpage is more recent than the analyzer System version, follow the webpage instructions to download and apply the current system version software to your analyzer.

To perform test and alignment procedures, the XG-75 Mobile radio must be connected to the R8000 Communications System Analyzer as shown in the figures below.

Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform the indicated alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

7.1. Cable Sweep

Every RF cable connected between a radio under test and the analyzer attenuates the signal propagating through it. The amount of attenuation varies by several factors such as operating frequency, cable length, and cable type. Ensuring this attenuation is accounted for by the analyzer is important to the accuracy of several tests and alignments, primarily power tests.

Sweep the RF cable used between the Radio and Analyzer, label the RF cable with the stored cable sweep name, and enable the Cable Sweep feature in the analyzer System, System Settings... menu. Refer to <u>Application Note FCT-1017</u> Utilizing Cable Sweep for instructions on how to perform a cable sweep.

7.2. Test Hardware

Test Aid	Recommended part	Description
USB radio programming	Astronics part#	USB to serial adapter cable for
cable	BCM676/MXT100	programming and servicing
		radio.
Variable DC power supply	Astron VS-50M	DC power supply with sufficient
		current sourcing capacity.
RF test cable (Type N to	Megaphase RF Orange	Shielded RF cable with low loss.
TNC)	series	
Reference cable	Pomona 5697	BNC cable for sweeping RF test
		cable.
6 dB attenuator	Mini-Circuits 15542	Attenuator for reducing
		Reference cable VSWR.
Audio cables	Pomona 5697	Connects analyzer and mobile
		speaker load for routing
		recovered audio signals.
Speaker load	Astronics part #	Simulates speaker load for
	202161-02	mobile recovered audio tests.
Speaker cable	Harris part # 14002-	Routes recovered audio from
	0174-07	mobile to speaker load
Modified microphone	Astronics part #MC-	Routes simulated microphone
cable	101616-041_M	audio from analyzer to mobile
		MIC port.
CAN cable (remote mount	Harris part# CA-	Connects mobile transceiver to
only)	009562-001	remote mount control head.

 Table 36. Portable Test Hardware Table

7.3. XG-75 Mobile Test Setup

Refer to the diagrams below for proper test setup.

Figure 7-1. XG-75 Mobile Front Mount Test Setup Diagram

Figure 7-2. XG-75 Mobile Remote Mount Test Setup Diagram

8. Harris XG-75 Mobile Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency that are band- and mode -specific. A table of the frequencies used by each band may be found in the respective radio service manual.

Note: All analyzer Mode settings are Standard unless otherwise indicated.

8.1. Reference Frequency

RF Control	Port	Frequency	Modulation	Attenuation	
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	
Table 37. Analyzer Configuration for Reference Frequency					

8.1.1. Alignment

The radio is placed into Test Mode at a Tx Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit.
Frequency	Test Frequency
Freq Error	Measured frequency error
Min Limit	Minimum Limit (inclusive) for frequency error alignment
Max Limit	Maximum Limit (inclusive) for frequency error alignment
Old Softpot	Radio softpot before alignment
New Softpot	Radio softpot after alignment

 Table 38. Reference Frequency alignment results

8.1.2. Test

The radio is placed into Test Mode at a Tx Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit.
Frequency	Test Frequency
Freq Error	Measured frequency error
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Softpot	Radio softpot producing the Freq Error
	-

Table 39. Reference Frequency test results

8.2. TX Power

Note: For more information on Power Control and Power Sense softpots, see Harris radio maintenance manuals.

RF Control	Port	Frequency	Modulation	Attenuation	
Monitor	RF IN/OUT	Test Frequency	FM	40 dB	
Table 40. Apolyzor Configuration for TV Dower					

Table 40. Analyzer Configuration for TX Power

8.2.1. Alignment

The TX Power alignment aligns the power output level of the radio at Low, Mid, and High power levels. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency and the Low, Mid, and High power settings in turn. For each test frequency, the output level is measured and then adjusted until near to a band-specific output level defined by the respective Harris XG-75 Mobile radio service manuals. See APPENDIX A for test limits used.

Name	Description
Result	Pass or Fail. Power Out within manufacturer limits
Power Level	Power setting under alignment (Low, Mid, High)
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out
Old Pwr Cntl	Original radio Power Control softpot setting before alignment.
New Pwr Cntl	Radio Power Control softpot setting after alignment.
Old Pwr Sens	Radio Power Sense softpot setting before alignment.
New Pwr Sens	Radio Power Sense softpot setting after alignment.

Table 41. TX Power alignment results

8.2.2. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the first Tx Test Frequency, the output level is measured at each TX Test Frequency, for Low, Mid, and High Power, and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Power Level	Power setting under test (Low, Mid, High)
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out
Power Control	Radio Power Control softpot setting which yields Power Out
Power Sense	Radio Power Sense softpot setting which yields Power Out

Table 42. TX Power test results

8.3. Tx Modulation Limit

The Tx Modulation Limit test measures the radio's maximum modulation level at a specific test frequency.

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg	
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	+/-Peak / 2	
Table 43. Analyzer Configuration for Tx Modulation Limit test						

8.3.1. Tx Modulation Limit Test

The radio is placed into Test Mode at low power at the last TX Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the \pm Peak / 2-averaged deviation of this tone is measured with the analyzer. The test results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is less than or equal to Max Limit.
Frequency	Test Frequency
Deviation	Measured maximum deviation level
Min Limit	Minimum passable deviation level
Max Limit	Maximum passable deviation level

Table 44. Tx Modulation Limit test results

8.4. P25 Phase 1 Tx Modulation (C4FM) Test

The P25 Phase 1 Tx Modulation (C4FM) test measures the radio's P25 Phase 1 C4FM modulation level at a specific test frequency.

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg	
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	Peak Avg	
Table 45. Analyzer Configuration for P25 Phase 1 Tx Modulation (C4FM) test						

8.4.1. P25 Phase 1 Tx Modulation (C4FM) Test

The radio is placed into Test Mode at low power at the last Tx Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the Peak-averaged deviation of this tone is measured with the analyzer. This test is performed at a single Tx Test Frequency. The test results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is between Min Limit and Max Limit.
Frequency	Test Frequency
Measured Dev	Measured P25 Phase 1 C4FM deviation
Min Limit	Minimum passable deviation level
Max Limit	Maximum passable deviation level

Table 46. P25 Phase 1 Tx Modulation (C4FM) test results

8.5. P25 Phase 2 Tx Modulation (TDMA) Test

The P25 Phase 2 Tx Modulation (TDMA) test measures the radio's P25 Phase 2 TDMA modulation level at a specific test frequency.

RF Control	Port	Frequency	Modulation	Attenuation	Dev Avg	
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	+/-Peak / 2	
Table 47. Analyzer Configuration for P25 Phase 2 Tx Modulation (TDMA) test						

8.5.1. P25 Phase 2 Tx Modulation (TDMA) Test

The radio is placed into Test Mode at low power at the last Tx Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the +/-Peak / 2-averaged deviation of this tone is measured with the analyzer. This test is performed at a single Tx Test Frequency. The test results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is between Min Limit and Max Limit.
Frequency	Test Frequency
Measured Dev	Measured P25 Phase 2 TDMA deviation
Min Limit	Minimum passable deviation level
Max Limit	Maximum passable deviation level

Table 48. P25 Phase 2 Tx Modulation (TDMA) test results

8.6. Rx Audio Level and Distortion

Rx Audio Level and Distortion test verifies the receiver audio amplitude and distortion are at appropriate levels.

RF Control	Port	Frequency	Modulation	Output	
Generate	RF IN/OUT	Test Frequency	FM	-47 dBm	
Table 40. An abuse Orac formation for Dechardia Land, and Distantian test					

 Table 49. Analyzer Configuration for Rx Audio Level and Distortion test

8.6.1. RX Audio Level and Distortion Test

The radio is placed into Test Mode at Wide bandwidth and lowest Rx Test Frequency and commanded to transmit. The analyzer generates a modulation tone and the audio voltage and distortion of the radio's demodulated signal is measured with the analyzer. Both the audio level and the distortion are compared against test limits and written to the log file.

Name	Description
Result	Pass or Fail. Distortion is less than or equal to Max Limit.
Frequency	Test Frequency
Min Limit	Minimum audio voltage level required to pass the test
Max Volume	Audio volume level generated by the radio at max volume setting
Mid Vol Dist	Measured distortion percentage at mid volume setting
Max Limit	Maximum passable distortion (inclusive)

Table 50. Rx Audio Level and Distortion test results

8.7. RSSI

RSSI alignment and test verifies that varying levels of RF input power are accurately measured by the radio's receive signal strength indicator.

RF Control	Port	Frequency	Modulation	Output Level	
Generate	RF IN/OUT	Test Freq	None	Various	
Table 51. Analyzer Configuration for RSSI alignment, test					

8.7.1. Alignment

The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted to match the current RSSI output level. The radio RSSI level is requested and then the corresponding softpot applied to the radio. The final results are written to the log file. This process is repeated for each Rx Test Frequency and each RSSI level (Weak, Medium, and High).

Name	Description
Result	Pass or Fail. Pass if radio RSSI within target +/- tolerance
Frequency	Test Frequency
Weak Level +/-Tolerance	Measured Radio RSSI at weak input level
Weak Softpot	RSSI softpot associated with weak level
Medium Level +/-	Measured Radio RSSI medium input level
Tolerance	
Med Softpot	RSSI softpot associated with medium level
Strong Level +/-Tolerance	Measured Radio RSSI strong input level
Strong Softpot	RSSI softpot associated with strong level

Table 52. RSSI alignment results

8.7.2. Test

The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted to match the current RSSI output level. The radio RSSI level is requested from the radio. The final results are written to the log file. This process is repeated for each Rx Test Frequency and each RSSI level (Weak, Medium, and High). Test report format is identical to RSSI alignment.

RX Sensitivity (SINAD) 8.8.

Rx Sensitivity (SINAD) test verifies the receiver analog audio sensitivity is at an appropriate level.

RF Control	Port	Frequency	Modulation	Output Level
Generate	RF IN/OUT	Test Freq	1 kHz @ 3 kHz	-60 dBm
Table 52 Analyzar Configuration for DV Sanaitivity toot				

Table 53. Analyzer Configuration for RX Sensitivity test

8.8.1. Test

The analyzer is setup by applying the Modulation signal in Table 28 to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at the first bandwidth and first RX Test Frequency. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file. This process is repeated for each bandwidth and each RX Test Frequency.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures about 12 dB
Max Limit	Maximum Limit (inclusive) for RX Sensitivity to Pass
Table 54 RX Sen	sitivity test results

Table 54. RX Sensitivity test results

8.9. Squelch Open and Close

Squelch Open and Close alignment verifies and modifies as necessary the squelch hysteresis so stronger RF signals are correctly received and weaker RF signals are correctly blocked.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	Bandwidth- and frequency-	Model-
			specific	specific
T				

 Table 55. Analyzer Configuration for Squelch Open and Close alignment, test

8.9.1. Alignment

For each bandwidth mode (Narrowband, Wideband, NPSPAC, C4FM) and for each test frequency, the analyzer is setup to use the bandwidth- and test frequency-specific RF bandwidth and Fixed 1 kHz levels. The radio volume is then adjusted for Rated Audio. The radio is placed into Test Mode and the analyzer output level adjusted to -130 dBm. The analyzer output level is slowly increased until the radio unsquelches. The output level is then lowered until radio again squelches. SINAD is measured at the unsquelch point and the output levels between the unsquelch point and the squelch point are compared against test limits. If outside test limits, applicable softpots are updated and the alignment process is repeated. Once measurements are within test limits, the final results are written to the log file. This process is repeated for each bandwidth and each test frequency. Results are recorded to test log file.

Name	Description
Result	Pass or Fail. Pass if alignment completes within valid softpot range.
Frequency	Test Frequency
Min Sql Open	Minimum SINAD level at which unsquelch should occur
Open SINAD	SINAD level at which squelch opens
Max Sql Open	Maximum SINAD level at which unsquelch should occur
Min Hyst	Minimum hysteresis between squelch open output level and squelch
	close output level
Hysteresis	Difference between squelch open output level and squelch close output
	level
Max Hyst	Maximum hysteresis between squelch open output level and squelch
	close output level
Open Softpot	Radio softpot governing Squelch Open level.
Close Softpot	Radio softpot governing Squelch Close level.

Table 56. Squelch Open and Close alignment results

8.9.2. Test

For each bandwidth mode (Narrowband, Wideband, NPSPAC, C4FM) and for each test frequency, the analyzer is setup to use the bandwidth- and test frequency-specific RF bandwidth and Fixed 1 kHz levels. The radio volume is then adjusted for Rated Audio.

The radio is placed into Test Mode and the analyzer output level adjusted to -130 dBm. The analyzer output level is slowly increased until the radio unsquelches. The output level is then lowered until radio again squelches. SINAD is measured at the unsquelch point and the output levels between the unsquelch point and the squelch point are compared against test limits. If outside test limits, up to two measurement attempts are made to verify failure. Final results are written to the log file. This process is repeated for each bandwidth and each test frequency.

Name	Description
Result	Pass or Fail. Pass if alignment completes within valid softpot range.
Frequency	Test Frequency
Min Hyst	Minimum hysteresis between squelch open output level and squelch
	close output level
Hysteresis	Difference between squelch open output level and squelch close output
	level
Max Hyst	Maximum hysteresis between squelch open output level and squelch
	close output level
Open Softpot	Radio softpot governing Squelch Open level.
Close Softpot	Radio softpot governing Squelch Close level.

Table 57. Squelch Open and Close test results

8.10. P25 Phase 1 Rx Sensitivity (C4FM) Test

The P25 Phase 1 Rx Sensitivity (C4FM) test measures the radio's P25 Phase 1 C4FM sensitivity level at several Rx test frequencies.

RF Control	Port	Frequency	Modulation	Output Level
Generate	RF IN/OUT	Test Frequency	C4FM	-116 dBm
Table 58. Analyzer Configuration for P25 Phase 1 Rx Sensitivity (C4FM) test				

8.10.1. Test

The analyzer is setup by applying the Modulation signal in Table 30 to the radio. The radio is placed into Test Mode at the first bandwidth and first RX Test Frequency. The radio's reported BER level is measured and compared against test limits. The final results are written to the log file. This process is repeated for each Test Frequency.

Name	Description
Result	Pass or Fail. BER level within Max Limit
Frequency	Test Frequency
BER	Radio Bit Error Rate (BER) level
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass
Min Limit	Minimum Limit (exclusive) for Sensitivity (SINAD) to Pass

Table 59. P25 Phase 1 Rx Sensitivity (C4FM) test results

8.11. P25 Phase 2 Rx Sensitivity (TDMA) Test

The P25 Phase 2 Rx Sensitivity (TDMA) test measures the radio's P25 Phase 2 TDMA sensitivity level at several Rx test frequencies.

RF Control	Port	Frequency	Modulation	Output Level
Generate	RF IN/OUT	Test Frequency	TDMA	-116 dBm
Table 60. Analyzer Configuration for P25 Phase 2 Rx Sensitivity (TDMA) test				

8.11.1. Test

The analyzer is setup by applying the Modulation signal in Table 32 to the radio. The radio is placed into Test Mode at the first bandwidth and first RX Test Frequency. The radio's reported BER level is measured and compared against test limits. The final results are written to the log file. This process is repeated for each Test Frequency.

Name	Description
Result	Pass or Fail. BER level within Max Limit
Frequency	Test Frequency
BER	Radio Bit Error Rate (BER) level
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass
Min Limit	Minimum Limit (exclusive) for Sensitivity (SINAD) to Pass

Table 61. P25 Phase 2 Rx Sensitivity (TDMA) test results

8.12. Basic Troubleshooting

Symptom	Possible Cause	Possible Solution
Analyzer consistently fails to communicate with radio	 Radio not running XGP firmware 	 AutoTune only supports test and alignment on XG-75 series radios running XGP firmware. Older ECP firmware is not supported.
	 Tx/Rx data signals in floating state (XG-75 Portable only) 	 Reset (disconnect/reconnect) ground pin (A-) of radio programming cable to Harris Test Box.
	Unsupported USB to serial adapter (mobiles only)	 Approved USB to serial adapters for connecting the R8000 analyzer to the Harris XG-75 Mobile series radio under test include any adapters which utilize an FTDI FT232_USB to serial UART interface OR Prolific Technology Inc. PL-2303 USB to serial controller interface. See www.ftdichip.com or www.prolific.com.tw for more detail.
	 Radio on a trunking channel 	 Change radio channel to a conventional channel. Trunking channel mode can prevent AutoTune from placing radio into test mode.
Analyzer occasionally fails to communicate with radio	 USB hub in use 	 USB hubs are known to occasionally prevent or drop radio communication. Connect the radio programming cable directly to an analyzer USB port.

Tx Power aligns power output levels lower than expected.	 RF Level Offset not enabled 	 Enable Settings > System Settings > RF Level Offset. Change RF In/Out offset value to correspond with the RF cable in use and the radio's operating band. For example, if 0.5 dB of loss expected, enter "-0.5 dB" as the RF In/Out offset value. Cable losses are entered as negative values.
Squelch Open and Close test fails one or more points. Can occur even after Squelch Open and Close alignment has just been performed.	 Squelch Open and Close sensitivity 	Repeat the Squelch Open and Close test. The variable nature of the unsquelch/squelch process during the Squelch Open and Close test sometimes makes test consistency irregular.

Table 62. Harris XG-75 Series Troubleshooting Chart

9. Support Information

9.1. Technical Support

Document Library:	freedomcte.com/library/
Video Library:	freedomcte.com/videos/
Phone:	903.985.8999
Email:	Freedom.TechnicalSupport@astronics.com

9.2. Sales

Phone:	903.985.8999
Email:	LMRSales@astronics.com

APPENDIX A. Test Limits

The factory limits contain the default limits as defined by the radio manufacturer and generally should not be modified. However, if extenuating circumstances cause a need to modify the limits this is accommodated by AutoTune. Refer to the R8000 Series Communications System Analyzer Owner's Manual (FCT-1365) for modification instructions.

The following tables list the default test limits for each Harris XG-75 Portable and XG-75 Mobile radio model supported by AutoTune.

Harris XG-75 Series AutoTune™ User Guide

Section	Test Name	Limit	Default Value
6.1	Reference Oscillator	Reference Oscillator Align	Min= -0.15 ppm
			Max= 0.15 ppm
		Reference Oscillator Test	Min= -1.5 ppm
			Max= 1.5 ppm
		Reference Oscillator Test	Min= -0.6 ppm
		700/800MHz Pe	Max= 0.6 ppm
6.2.1	TX Power (Align)	TX Power Align VHF Low	Min = 0.49 W
			Max = 0.51 W
		TX Power Align UHF-L(5W) Low	Min = 0.49 W
			Max = 0.51 W
		TX Power Align UHF-L(100mW) Low	Min = 0.02 W
			Max = 0.02 W
		TX Power Align UHF-H Low	Min = 0.49 W
			Max = 0.51 W
		TX Power Align 700/800MHz Low	VIIII = 0.49 VV
			$\frac{1}{1} \frac{1}{1} \frac{1}$
		TX Power Align VHF Mid	VIIII = 2.97 VV
		TX Dowor Align LIHE L (EM/) Mid	$Min_{-} = 3.03 W$
			$M_{2} = 2.02 W$
		TX Power Alian LIHE-H Mid	Min_1 98 W/
			Max-2 02 W
		TX Power Alian 700/800MHz Mid	Min=1.58 W
			Max=1.62 W
		TX Power Alian VHF High	Min=5.93 W
		·····	Max=6.07 W
		TX Power Align UHF-L(5W) High	Min=4.94 W
			Max=5.06 W
		TX Power Align UHF-L(100mW) High	Min=0.09 W
			Max=0.10 W
		TX Power Align UHF-H High	Min=4.94 W
			Max=5.06 W
		TX Power Align 700MHz High	Min=2.82 W
			Max=2.88 W
		TX Power Align 800MHz High	Min=3.16 W
			Max=3.24 W
6.2.2	TX Power (Test)	TX Power Test VHF Low	Min= 0.44 W
			Max= 0.56 W
		TX Power Test UHF-L(5VV) Low	VIIII = 0.44 VV
		TX Power Test LIHE L (100m)//) Low	Min = 0.00 W
		TA Power Test OHF-L(Tooniw) Low	$M_{2} = 0.09 W$
		TX Power Test LIHE-H Low	Min = 0.44 W
		TX Fower rest of it fit how	Max= 0.56 W
		TX Power Test 700/800MHz Low	Min = 0.44 W
			Max = 0.56 W
		TX Power Test VHF Mid	Min= 2.7 W
			Max= 3.3 W
		TX Power Test UHF-L(5W) Mid	Min= 1.8 W
			Max= 2.2 W
		TX Power Test UHF-H Mid	Min= 1.8 W
			Max= 2.2 W
		TX Power Test 700/800MHz Mid	Min= 1.4 W

			Max= 1.8 W
		TX Power Test VHF High	Min= 5.3 W
			Max= 6.7 W
		TX Power Test UHF-L(5W) High	Min= 4.4 W
			Max= 5.6 W
		TX Power Test UHF-L(100mW) High	Min= 0.09 W
			Max= 0.11 W
		TX Power Test UHF-H High	Min= 4.4 W
			Max= 5.6 W
		TX Power Test 700MHz High	Min= 2.5 W
			Max= 3.2 W
		TX Power Test 800MHz High	Min= 2.8 W
			Max= 3.6 W
6.3	FM Deviation	FM Deviation Narrow	Min = 2.15 kHz
			Max = 2.35 kHz
		FM Deviation Wide	Min=4.1 kHz
			Max=4.5 kHz
		FM Deviation 700/800MHz NPSPAC	Min=3.5 kHz
			Max=3.7 kHz
		FM Deviation 700/800MHz Wide	Min=4.3 kHz
			Max=4.7 kHz
		FM Deviation 700/800MHz Narrow	Min=2.15 kHz
			Max=2.35 kHz
6.4	Channel Guard	CG Deviation Wideband TCG	Min=500 Hz
	Deviation and DCG		Max=1000 Hz
	Scalar Test	CG Deviation NPSPAC	Min=400 Hz
			Max=800 Hz
		CG Deviation Narrowband TCG	Min=350 Hz
			Max=500 Hz
		CG Deviation Wideband DCG	Min=350 Hz
0.5			Max=500 HZ
6.5	C4FM Deviation Test	Data C4FM Deviation Wideband 9600	Min=2.900 KHZ
		Data OAEM Daviation OAEM	Max=3.100 kHz
		Data C4FIM Deviation C4FIM	Max 2 020 kHz
		Data CAEM Deviation Norrowhand	Max=3.026 KHZ
		4000 Data CAEM Daviation Narrowband	Min 2 200 kHz
			Max-2 500 kHz
6.6	P25 Phase 1 Ty	P25 Phase 1 Tx Medulation C4EM	Min_2 540 kHz
0.0	Modulation (C4FM)	F23 FHASET TX MODULATION C41 M	May-3 120 kHz
	Test		Widx=0.120 KHZ
67	P25 Phase 2 Tx	P25 Phase2 Tx Modulation TDMA	Min=2 995 kHz
0.7	Modulation (TDMA)		Max=3 310 kHz
	Test		
6.8	TX Audio Sensitivity	Tx Audio Distortion	Max=3%
	and Distortion	Tx Audio Level	Max=14 mV
6.9	Rx Audio Level and	Rx Audio Distortion	Max=3%
	Distortion	Rx Audio Voltage	Max=2 VPMS
6 10	Squelch Open and	Squelch Hysteresis	Max=5 dB
0.10	Close		Min=2 dB
		Squelch Open SINAD Alian	Max=9.5 dB
			Min=5.0 dB
		Squelch Open SINAD Test	Max=9.5 dB
			an=0.0 dD

			Min=5.0 dB
		Squelch Open Output Level	Min=-130 dBm
6.11	RSSI	XG RSSI Deviation Tolerance	Max=2 dBm
6.12	RX Sensitivity (SINAD)	SINAD	Max=-119 dBm
		Audio Distortion	Max=0 %
6.13	P25 Phase 1 Rx	P25 Phase1 Rx Sensitivity C4FM	Min=0 %
	Sensitivity (C4FM) Test		Max=5 %
6.14	P25 Phase 2 Rx	P25 Phase2 Rx Sensitivity TDMA	Min=0 %
	Sensitivity (TDMA) Test		Max=5 %
6.15	Rx IF Bandwidth –	Rx IF Selectivity	Max=7 kHz
	Signal Displacement		Min=2 kHz
	Bandwidth Test		

Table A-1. Default Harris XG-75 Portable Limits

Section	Test Name	Limit	Default Value
8.1	Reference Oscillator	Reference Oscillator Align VHF	Min= -10 Hz
			Max= 10 Hz
		Reference Oscillator Align 350MHz	Min= -10 Hz
			Max= 10 Hz
		Reference Oscillator Align UHF-L	Min= -10 Hz
			Max= 10 Hz
		Reference Oscillator Align UHF-H	Min= -10 Hz
			Max= 10 Hz
		Reference Oscillator Align	Min= -10 Hz
		700/800MHz	Max= 10 Hz
		Reference Oscillator Test	Min= -1.5 ppm
			Max= 1.5 ppm
8.2.1	TX Power (Align)	TX Power Align VHF(50W) Low	Min = 9.4 W
			Max = 10.6 W
		TX Power Align VHF(100W) Low	Min = 47.2 W
			Max = 53.0 W
		TX Power Align 350MHz Low	Min = 7.5 W
			Max = 8.5 W
		TX Power Align UHF-L Low	Min = 8.2 W
			Wax = 9.2 W
		TX Power Align UHF-H Low	VIIII = 8.2 VV
		TV Dewer Alize 700MHz Lew	$\frac{1}{100} = 9.2 \text{ W}$
		TX Power Align 700101HZ Low	VIIII = 1.55 VV
		TV Dower Align 200MHz Low	$\frac{1}{100} = 1.75 \text{ VV}$
			$M_{2X} = 5.2 \text{ VV}$
		TX Power Alian V/HE(50W/) Mid	Min = 18.0 W
		TX FOWER Alight VTIF(5000) Inid	Max=21.2 W
		TX Power Alian VHF(100W) Mid	Min=76.0 W
		· · · · · · · · · · · · · · · · · · ·	Max=85.0 W
		TX Power Alian 350MHz Mid	Min=18.9 W
		· · · · · · · · · · · · · · · · · · ·	Max=21.2 W
		TX Power Alian UHF-L Mid	Min=22.0 W
			Max=22.8 W
		TX Power Align UHF-H Mid	Min=22.0 W
		5	Max=22.8 W
		TX Power Align 700MHz Mid	Min=16.1 W
			Max=16.9 W
		TX Power Align 800MHz Mid	Min=16.1 W
		_	Max=16.9 W
		TX Power Align VHF(50W) High	Min=47.2 W
			Max=53.0 W
		TX Power Align VHF(100W) High	Min=103.8 W
			Max=116.5 W
		TX Power Align 350MHz High	Min=37.8 W
			Max=42.4 W
		TX Power Align UHF-L High	Min=53.0 W
			Max=55.0 W
		IX Power Align UHF-H High	Min=53.0 W
			Max=55.0 W
		IX Power Align /00MHz High	Min=36.6 W
			IVIAX=37.4 VV
		IX Power Align 800MHz High	Min=36.1 W

			Max=36.9 W
8.2.2	TX Power (Test)	TX Power Test VHF(50W) Low	Min = 8.9 W
			Max = 11.2 W
		TX Power Test VHF(100W) Low	Min = 44.5 W
			Max = 56.1 W
		TX Power Test 350MHz Low	Min = 7.1 W
			Max = 9.0 W
		TX Power Test UHF-L Low	Min = 7.8 W
			Max = 9.8 W
		TX Power Test UHF-H Low	Min = 7.8 W Max = 9.8 W
		TX Power Test 700MHz Low	Min = 1.47 W
			Max = 1.85 W
		TX Power Test 800MHz Low	Min= 4.8 W
			Max= 6.1 W
		TX Power Test VHF(50W) Mid	Min=18.9 W
			Max=21.2 W
		TX Power Test VHF(100W) Mid	Min=76.0 W
			Max=85.0 W
		TX Power Test 350MHz Mid	Min=18.9 W
			Max=21.2 W
		TX Power Test UHF-L Mid	Min=21.1 W
			Max=23.7 W
		TX Power Test UHF-H Mid	Min=21.1 W
			Max=23.7 W
		TX Power Test 700MHz Mid	Min=14.7 W
			Max=18.5 W
		TX Power Test 800MHz Mid	Min=14.7 W
		TX Power Test VHE(50W) High	Min=47.2 W
			Max=53.0 W
		TX Power Test VHF(100W) High	Min=103.8 W
			Max=116.4 W
		TX Power Test 350MHz High	Min=37.7 W
			Max=42.4 W
		TX Power Test UHF-L High	Min=51.0 W
			Max=57.2 W
		TX Power Test UHF-H High	Min=51.0 W
			Max=57.2 W
		TX Power Test 700MHz High	Min=34.9 W
			Max=39.2 W
		TX Power Test 800MHz High	Min=34.5 W
			Max=38.7 W
8.3	Tx Modulation Limit	Tx Modulation Limit Narrowband	Min = 2.15 kHz Max = 2.35 kHz
		Tx Modulation Limit Wideband	Min=4.3 kHz
			Max=4.7 kHz
		Tx Modulation Limit 700/800MHz	Min=4.3 kHz
		Wideband	Max=5.0 kHz
8.4	P25 Phase 1 Tx	P25 Phase1 Tx Modulation C4FM	Min=2.540 kHz
	Modulation (C4FM)		Max=3.120 kHz
	Test		
8.5	P25 Phase 2 Tx	P25 Phase2 Tx Modulation TDMA	Min=2.995 kHz
	Modulation (TDMA)		Max=3.310 kHz

Harris XG-75 Series Auto I une 11 User Gui
--

	Test		
8.6	Rx Audio Level and	Rx Audio Distortion	Max=5 %
	Distortion	Rx Audio Voltage	Max=7.745 V _{RMS}
8.9	Squelch Open and	Squelch Hysteresis	Max=6 dB
	Close		Min=2 dB
		Squelch Open SINAD Align	Max=12 dB
			Min=8 dB
		Squelch Open SINAD Test	Max=12 dB
			Min=8 dB
		Squelch Open Output Level	Min=-130 dBm
8.7	RSSI	XG RSSI Deviation Tolerance	Max=2 dBm
8.8	RX Sensitivity (SINAD)	SINAD VHF	Max=-119 dBm
		SINAD 350MHz	Max=-119 dBm
		SINAD UHF1	Max=-119 dBm
		SINAD UHF2	Max=-119 dBm
		SINAD 700MHz	Max=-119 dBm
		SINAD 800MHz	Max=-118 dBm
		Audio Distortion	Max=0 %
8.10	P25 Phase 1 Rx	P25 Phase1 Rx Sensitivity C4FM	Min=0 %
	Sensitivity (C4FM) Test		Max=5 %
8.11	P25 Phase 2 Rx	P25 Phase2 Rx Sensitivity TDMA	Min=0 %
	Sensitivity (TDMA) Test		Max=5 %

Table A-2. Default Harris XG-75 Mobile Limits

APPENDIX B. Sample Test Result Report

Note: Results shown below are representative of actual results. Actual results and report format may vary.

		Test Re	sult Report					
Model #: Serial #:	XG-75Pe:system A40207000244	1	Date/Time: Operator ID:	7/27/2016 3:06 M	РМ			
Info: FLA	SH Version: XGP	R05C05						
Reference	Oscillator Ali	gn						
Result	Frequency	Freq Error	Min Limit	Max Limit	Old Softpot	New Softpot		
Pass	860.987 MHz	33 Hz	-129 Hz	129 Hz	187	188		
TX Power	Align - 860.987	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.49 W	0.49 W	0.51 W	0	655	0	817
Pass Pass	M10 High	3.22 W	1.58 W 3.16 W	1.62 W 3.24 W	0	1375	0	2027
TX Power	Align - 857.687	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.49 W	0.49 W	0.51 W	692	648	803	816
Pass Pass	M10 High	1.60 W 3.19 W	1.58 W 3.16 W	1.62 W 3.24 W	1026	1349	1609	2011
TX Power	Align - 854.312	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.51 W	0.49 W	0.51 W	0	655	0	793
Pass Pass	M10 High	3.22 W	1.58 W 3.16 W	1.62 W 3.24 W	0	943 1375	0	2015
TX Power	Align - 851.012	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.51 W	0.49 W	0.51 W	706	661	808	830
Pass Pass	Mid High	1.61 W 3.16 W	1.58 W 3.16 W	1.62 W 3.24 W	1052 1190	954 1371	1413 1611	1424 1990
TX Power	Align - 815.987	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 w	0.49 w	0.51 W	0	671	0	784
Pass Pass	Mid High	1.59 W 3.19 W	1.58 W 3.16 W	1.62 W 3.24 W	0	983 1471	0 0	1358 1923
TX Power	Align - 812.687	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 w	0.49 W	0.51 W	694	630	802	786
Pass Pass	Mid High	1.60 W 3.21 W	1.58 W 3.16 W	1.62 W 3.24 W	1032 1174	911 1335	1401 1599	1325 1913
TX Power	Align - 809.312	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 W	0.49 W	0.51 W	0	615	0	782
Pass Pass	Mid High	1.61 W 3.20 W	1.58 W 3.16 W	1.62 W 3.24 W	0	887 1279	0 0	1320 1902
TX Power	Align - 806.012	500 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 w	0.49 W	0.51 W	681	638	794	772
Pass Pass	Mid High	1.58 W 3.17 W	1.58 W 3.16 W	1.62 W 3.24 W	1022 1159	927 1342	1408 1596	1298 1883
TX Power	Align - 804.993	750 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 w	0.49 W	0.51 W	0	631	0	735
Pass Pass	Mid High	1.62 W 2.87 W	1.58 W 2.82 W	1.62 W 2.88 W	0	927 1215	0	1352 1752
TX Power	Align - 803.256	250 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.51 W	0.49 W	0.51 W	697	654	750	781
Pass Pass	Mid High	1.62 W 2.85 W	1.58 W 2.82 W	1.62 W 2.88 W	1055 1186	956 1253	1328 1512	1344 1775
TX Power	Align - 802.906	250 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 W	0.49 W	0.51 W	0	655	0	738
Pass Pass	Mid High	1.58 W 2.87 W	1.58 W 2.82 W	1.62 W 2.88 W	0 0	959 1279	0 0	1327 1784
TX Power	Align - 800.506	250 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 W	0.49 W	0.51 W	712	667	749	769
Pass Pass	Mid High	1.58 W 2.87 W	1.58 W 2.82 W	1.62 W 2.88 W	1084 1221	983 1311	1326 1511	1324 1774
TX Power	- Align - 798.756	250 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 W	0.49 W	0.51 W	0	663	0	771
Pass Pass	Mid High	1.59 W 2.84 W	1.58 W 2.82 W	1.62 W 2.88 W	0 0	975 1295	0	1324 1733
TX Power	Align - 798.006	250 MHz						

Harris XG-75 Series AutoTune™ User Guide

Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.50 W 1 60 W	0.49 W 1 58 W	0.51 W 1 62 W	722 1111	654 968	749	733
Pass	High	2.82 W	2.82 W	2.88 W	1249	1271	1522	1756
TX Power	Align - 774.99	3750 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass Pass	Low Mid	0.51 W 1.59 W	0.49 W 1.58 W	0.51 W 1.62 W	0	671 991	0	767 1301
Pass	High	2.86 W	2.82 W	2.88 W	0	1327	0	1743
Posult	Power Level	230 MH2 ====================================	Min Limit	Max Limit	Old Bwr Cntl	New Pwr Cntl	Old Pwr Sens	Now Pwr Sons
 Dace	Low	0 50 W	0 49 W	0 51 W	760	677	761	758
Pass	Mid High	1.60 W	1.58 W 2 82 W	1.62 W	1158 1301	1014 1368	1323 1498	1305
TX Power	Align - 773.406	5250 MHz	2102	2100 #	1901	1900	1150	1,15
======= Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.51 W	0.49 W	0.51 W	0	687	0	725
Pass Pass	Mid High	1.62 W 2.84 W	1.58 W 2.82 W	1.62 W 2.88 W	0 0	1039 1375	0	1315 1698
TX Power	Align - 771.006	5250 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass	Low	0.51 W	0.49 W	0.51 W	759	712	748	758
Pass	High	2.86 W	2.82 W	2.88 W	1326	1456	1502	1739
TX Power	Align - 769.99	3750 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass Pass	Low Mid	0.50 W 1.62 W	0.49 W 1.58 W	0.51 W 1.62 W	0 0	719 1103	0 0	757 1311
Pass	High	2.86 W	2.82 W	2.88 W	0	1471	0	1733
TX Power	Align - 768.006	5250 MHz						
Result	Power Level	Power Out	Min Limit	Max Limit	Old Pwr Cntl	New Pwr Cntl	Old Pwr Sens	New Pwr Sens
Pass Pass	Low Mid	0.50 W 1.62 W	0.49 W 1.58 W	0.51 W 1.62 W	765 1187	718 1112	1327	/16 1313 1708
FM Dovia	tion Test wide	2.03 W	2.02 W	2.00 W	1331	1402	1497	1708
Result	Frequency	Deviation	Min Limit	Max Limit				
Pass	860.9875 MHz	4.5 kHz	4.3 kHz	4.7 kHz				
Pass Pass	857.6875 MHz 854.3125 MHz	4.5 kHz 4.4 kHz	4.3 kHz 4.3 kHz	4.7 kHz 4.7 kHz				
Pass Pass	851.0125 MHz 815.9875 MHz	4.5 kHz 4.4 kHz	4.3 kHz 4.3 kHz	4.7 kHz 4.7 kHz				
Pass Pass	812.6875 MHz 809.3125 MHz	4.5 kHz 4.5 kHz	4.3 kHz 4.3 kHz	4.7 kHz 4.7 kHz				
FM Devia	tion Test NPSPAG	-						
Result	Frequency	== Deviation	Min Limit	Max Limit				
Pass	806.0125 MHz	3.6 kHz	3.5 kHz	3.7 kHz				
FM Devia	tion Test Narrov	V						
Result	Frequency	Deviation	Min Limit	Max Limit				
Pass	804.9937 MHz 803.2563 MHz	2.18 kHz 2.23 kHz	2.15 kHz 2.15 kHz	2.35 kHz 2.35 kHz				
Pass Pass	802.9062 MHz 800.5063 MHz	2.20 kHz 2.21 kHz	2.15 kHz 2.15 kHz	2.35 kHz 2.35 kHz				
Pass Pass	798.7563 MHz 798.0063 MHz	2.21 kHz 2.21 kHz	2.15 kHz 2.15 kHz	2.35 kHz 2.35 kHz				
Pass Pass	774.9937 MHz 774.0063 MHz	2.21 kHz 2.21 kHz	2.15 kHz 2.15 kHz	2.35 kHz 2.35 kHz				
Pass Pass	773.4062 MHz 771.0063 MHz	2.21 kHz 2.19 kHz	2.15 kHz 2.15 kHz	2.35 kHz 2.35 kHz				
Pass Pass	769.9937 MHz 768.0063 MHz	2.18 kHz 2.21 kHz	2.15 kHz 2.15 kHz	2.35 kHz 2.35 kHz				
Channel	Guard Deviation	Test - Wideband	t TCG					
Result	Frequency	Deviation	Min Limit	Max Limit				
Pass	860.987500 MHz 851 012500 MHz	z 709 Hz z 709 Hz	500 HZ 500 HZ	1000 Hz 1000 Hz				
Pass	815.987500 MHz	z 710 Hz	500 Hz	1000 Hz				
Channel	Guard Deviation	Test - NPSPAC						
Result	Frequency	Deviation	Min Limit	Max Limit				
Pass	806.012500 MHz	z 569 Hz	400 Hz	800 Hz				
cnanne I	Guard Deviation	iest - Narrowba	ma ica	May Limit				
Result 	804 002750 MIL	257 U7	350 UZ	Max LIMIT				
Pass	768.006250 MHz	z 355 Hz	350 HZ	500 HZ				
Channel	Guard Deviation	Test - Wideband	d DCG					
Result	Frequency	Deviation	Min Limit	Max Limit				
Pass	860.987500 MHz	z 676 Hz	350 Hz	850 Hz				
C4FM Dev	iation Test							
Result	Frequency	Deviation	Min Limit	Max Limit				
Pass	860.987500 MHz	z 2.817 Hz	2.626 Hz	3.026 Hz				
P25 Phas	e 1 Tx Modulatio	on C4FM	and a second	Mary + Junit -				
Kesult	rest Frequency	measured Dev	MIN LIMIT	Max Limit				
rass	000.90/3 MHZ	2.003 KHZ	∠.340 KHZ	J.ILU KHZ				

Harris XG-75 Series AutoTune™ User Guide

P25 Phase 2 Tx Modulation TDMA Test Frequency Measured Dev Result Min Limit Max Limit 860.9875 MHz 3.174 kHz 3.310 kHz Pass 2 995 kHz Tx Audio Distortion Result Frequency Audio Level Max Limit Distortion Pass 860.9875 MHz 10 mV 2.8 % 3.0 % Rx Audio Level and Distortion Min Limit Result Frequency Mid Vol Dist Max Limit Max Volume Pass 768.006250 MHz 2.0 Vrms 3.3 Vrms 1.1 % 3.0 % RSSI Align Result Frequency -110 +/-2 dBm Weak Softpot -85 +/-2 dBm Med Softpot -60 +/-2 dBm Strong Softpot -108.5 dBm -111.2 dBm -109.1 dBm -109.7 dBm -110.2 dBm Pass Pass Pass Pass Pass Pass 860.9875 MHz 851.0125 MHz 774.9937 MHz 771.0063 MHz 768.0063 MHz 508 584 577 574 596 -85.6 dBm -85.0 dBm -84.4 dBm -85.0 dBm -85.0 dBm 1404 1404 1430 1434 1442 -59.5 dBm -60.0 dBm -60.0 dBm -59.5 dBm 2236 2238 2282 2256 2277 -60.0 dBm -59.5 dBm -60.4 dBm Rx Sensitivity (SINAD) Test Result Frequency 12dB SINAD Max Limit 768.006250 MHz -120.2 dBm 771.006250 MHz -120.2 dBm 774.993750 MHz -120.8 dBm 851.012500 MHz -119.8 dBm 860.987500 MHz -120.1 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm -119.0 dBm Pass Pass Pass Pass Pass Squelch Open and Close Align - Narrow Result Frequency Min Sql Open Open SINAD Max Sql Open Min Hyst Hysteresis Max Hyst Open Softpot Close Softpot Pass 771.00625 MHz 5 dB 9 dB 10 dB 2 dB 4 dB 5 dB 720 1500 Squelch Open and Close Align - Wide Result Frequency Min Sql Open Max Sql Open Close Softpot Open SINAD Min Hyst Hysteresis Max Hyst Open Softpot Pass 860.98750 MHz 5 dB 8 dB 10 dB 2 dB 2 dB 5 dB 1850 2550 Squelch Open and Close Align - NPSPAC Result Frequency Min Sql Open Open SINAD Max Sql Open Min Hyst Hysteresis Max Hyst Open Softpot Close Softpot 851.01250 MHz 5 dB 5 dB 2250 Pass 9 dB 10 dB 2 dB 2 dB 1400 P25 Phase1 Rx Sensitivity C4FM BER Result Frequency Max Limit Min Limit 768.0063 MHz 771.0063 MHz 774.9937 MHz 851.0125 MHz 860.9875 MHz 1.366 % 1.490 % 1.146 % 1.760 % 1.609 % 0.000 % 0.000 % 0.000 % 0.000 % 0.000 % Pass Pass Pass 5.0 % 5.0 % 5.0 % 5.0 % 5.0 % Pass Pass P25 Phase2 Rx Sensitivity TDMA Result Frequency BER Max Limit Min Limit 768.0063 MHz 771.0063 MHz 774.9937 MHz 851.0125 MHz 860.9875 MHz 0.000 % 0.000 % 0.000 % 0.000 % 0.000 % 0.308 % 0.329 % 0.275 % 0.516 % 0.587 % 5.0 % 5.0 % 5.0 % 5.0 % 5.0 % Pass Pass Pass Pass Pass Pass Rx IF Bandwidth Result Frequency 12 dB SINAD Min Limit Sig Disp BW Max Limit 3.00 kHz 7 kHz 860.9875 MHz -120.1 dB 2 kHz Pass Tests performed by AutoTune ${\rm ©}$ 2016 Freedom Communication Technologies, Inc. All Rights Reserved. APP Version 2.0.0.108

Figure B-1. Sample Test Result Report

APPENDIX C. Revision History

B – Options, cable sweep, H/W	M. Mullins	M. Hammer	5/1/24	0440
A – Original Release	M. Mullins	W. Black	11/11/2016	<u>0089</u>
Revision – Change	Requested By	Approved By	Rel. Date	ECO#