

R8000 SERIES COMMUNICATIONS SYSTEM ANALYZER

AUTOTUNE USER GUIDE

Motorola MOTOTRBO™ Portable Motorola MOTOTRBO™ Mobile

Astronics Test Systems 2002 Synergy Blvd, Suite 200 Kilgore, Texas 75662

Copyright © 2024 Astronics Test Systems All Rights Reserved Printed in U.S.A.

FCT-1372 Rev. B

AUTOTUNE™ SOFTWARE LICENSE AGREEMENT

The software license agreement governing use of the R8000 Series Communications System Analyzer AutoTune™ software is located in FCT-1365 R8000 Series Communications System Analyzer Operator's Manual.

TRADEMARKS

The Astronics Test Systems logo and Astronics Test Systems are registered ® trademarks of Astronics Test Systems Technologies.

MOTOROLA, MOTO, MOTOROLA SOLUTIONS and the Stylized M logo are trademarks or registered trademarks of Motorola Trademark Holdings, LLC and are used under license. All other trademarks are the property of their respective owners.

© 2012 Motorola Solutions, Inc.

All rights reserved.

OpenG License

Copyright (c) 2002, Cal-Bay Systems, Inc. <info@calbay.com>

Copyright (c) 2002, Jean-Pierre Drolet <drolet_jp@hotmail.com>

Copyright (c) 2002-2007, Jim Kring <jim@jimkring.com>

Copyright (c) 2002-2005, Rolf Kalbermatter < rolf.kalbermatter@citeng.com>

Copyright (c) 2003-2004, Paul F. Sullivan <Paul@SULLutions.com>

Copyright (c) 2004, Enrique Vargas <vargas@visecurity.com>

Copyright (c) 2004, Heiko Fettig <heiko.fettig@gmx.net>

Copyright (c) 2004, Michael C. Ashe <michael.ashe@imaginatics.com>

Copyright (c) 2005-2006, MKS Instruments, Inc., author: Doug Femec

<doug_femec@mkinst.com>, IM dafemec

Copyright (c) 2006, JKI <info@jameskring.com>

Copyright (c) 2006, JKI <info@jameskring.com>; Authors: Jim Kring

<iim@jimkring.com>, Philippe Guerit <pim labview@yahoo.com>

Copyright (c) 2007, JKI <info@jameskring.com> (Author: Jim Kring

<jim.kring@jameskring.com>)

Copyright (c) 2008, Ton Plomp <t.c.plomp@gmail.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this

- list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the SciWare, James Kring, Inc., nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

EXPORT CONTROL

EXPORT CONTROL WARNING – Do not disclose or provide this document or item (including its contents) to non-U.S. Citizens or non-U.S. Permanent Residents, or transmit this document or item (including its contents) outside the U.S. without the written permission of Astronics Test Systems and required U.S. Government export approvals.

TABLE OF CONTENTS

1. Introduction	1
2. Scope	1
2.1. Supported Models	2
3. Conventions	3
4. Requirements	
5. Motorola MOTOTRBO™ Portable Radio Test Setup	5
5.1. MOTOTRBO™ Portable Test Setup	
6. Motorola MOTOTRBO™ Portable Alignment and Test Descriptions	9
6.1. Reference Frequency	
6.2. TX Power Out	
6.3. Modulation Balance	
6.4. Front End Filter	
6.5. Front End Gain and Attenuation	
6.6. Distortion	
6.7. Sensitivity (SINAD)	
6.8. Digital Sensitivity (RX BER)	
6.9. Digital Sensitivity (TX BER)	
6.10. Internal Voice Modulation	
6.11. External Voice Modulation	
7. Motorola MOTOTRBO™ Mobile Radio Test Setup	
7.1. MOTOTRBO™ Mobile Test Setup	
8. Motorola MOTOTRBO™ Mobile Alignment and Test Descriptions 8.1. Reference Frequency	
8.1. Reference Frequency	
8.3. Deviation Balance	
8.4. Front End Filter	
8.5. Front End Gain and Attenuation	
8.6. Distortion	
8.7. Sensitivity (SINAD)	
8.8. Digital Sensitivity (RX BER)	
8.9. Digital Sensitivity (TX BER)	
8.10. Internal Voice Modulation	
8.11. External Voice Modulation	
9. Basic Troubleshooting	
10. Support Information	
10.1. Technical Support	
10.2. Sales Support	
11. References	
APPENDIX A. Sample Test Result Report	A-1
APPENDIX B. Revision History	

LIST OF FIGURES

Figure 5-1. MOTOTRBO™ Portable Professional Core/Enhanced Test Setup)
Diagram	6
Figure 5-2. MOTOTRBO™ Portable Entry Professional Test Setup Diagram.	7
Figure 5-3. MOTOTRBO™ Portable SL Series Radio Test Setup Diagram	7
Figure 5-4. MOTOTRBO™ Portable Commercial Test Setup Diagram	8
Figure 6-1. Place keyed radio next to analyzer speaker.	21
Figure 6-2. Adjust analyzer volume until about 4 kHz deviation is measured	22
Figure 7-1. MOTOTRBO™ Mobile Professional Core/Enhanced Test Setup	
Diagram	24
Figure 7-2. MOTOTRBO™ Mobile Entry Professional Test Setup Diagram	25
Figure 7-3. MOTOTRBO™ Mobile Commercial Test Setup Diagram	26
Figure 8-1. Place keyed radio next to analyzer speaker.	39
Figure 8-2. Adjust analyzer volume until about 4 kHz deviation is measured	40
Figure A-1. Sample Test Result Report	. A-2

LIST OF TABLES

Table 2-1. AutoTune Supported MOTOTRBO Models	2
Table 4-1. Minimum required firmware versions	3
Table 4-2. Required options	3
Table 4-3. Required test accessories	4
Table 6-1. Analyzer Configuration for Reference Frequency	9
Table 6-2. Reference Frequency alignment results	
Table 6-3. Reference Frequency test results	10
Table 6-4. Analyzer Configuration for TX Power Out	11
Table 6-5. Motorola specified target power	
Table 6-6. TX Power Out alignment results	
Table 6-7. TX Power Out test results	
Table 6-8. Analyzer Configuration for Modulation Balance test, alignment	13
Table 6-9. Modulation Balance alignment results	13
Table 6-10. Modulation Balance test results	14
Table 6-11. Analyzer Configuration for Front End Filter test, alignment	
Table 6-12. Front End Filter alignment results	
Table 6-13. Front End Filter test results	
Table 6-14. Analyzer Configuration for FE Gain and Attenuation alignment	16
Table 6-15. Front End Gain and Attenuation alignment results	16
Table 6-16. Analyzer Configuration for Distortion Test	
Table 6-17. Distortion test results	
Table 6-18. Analyzer Configuration for Sensitivity (SINAD) test	
Table 6-19. Sensitivity (SINAD) test results	
Table 6-20. Analyzer Configuration for Digital Sensitivity (RX BER) test	19
Table 6-21. Digital Sensitivity (RX BER) test results	
Table 6-22. Analyzer Configuration for Digital Sensitivity (TX BER) test	
Table 6-23. Digital Sensitivity (TX BER) test results	
Table 6-24. Analyzer Configuration for Internal Voice Modulation test	
Table 6-25. Internal Voice Modulation test results	
Table 6-26. Analyzer Configuration for External Voice Modulation test	
Table 6-27. External Voice Modulation test results	
Table 8-1. Analyzer Configuration for Reference Frequency	
	27
Table 8-3. Reference Frequency test results	28
Table 8-4. Analyzer Configuration for TX Power Out	
Table 8-5 Motorola MOTOTRBO™ Mobile specified target power	
Table 8-6. TX Power Out alignment results	
Table 8-7. TX Power Out alignment results	
Table 8-8. TX Power Out test results	
Table 8-9. Analyzer Configuration for Deviation Balance test, alignment	
Table 8-10. Deviation Balance alignment results	
Table 8-11. Deviation Balance test results	
Table 8-12. Analyzer Configuration for Front End Filter test, alignment	
Table 8-13. Front End Filter alignment results	33

AutoTune™ User Guide

33
34
34
35
35
36
36
37
37
38
38
39
40
41
41
43

1. Introduction

The Astronics Test Systems R8000 Series Communications System Analyzer AutoTune™ feature (hereafter "AutoTune") provides an automated test and alignment solution for supported two-way radios.

2. Scope

This document is intended to provide information about the tests and alignments performed by AutoTune for supported Motorola MOTOTRBO™ Portable and MOTOTRBO™ Mobile radios. This document is limited to radio-specific information.

Refer to R8100 Series Communications System Analyzer Owner's Manual (FCT-1382) for an overview and basic operating instructions for AutoTune itself.

2.1. Supported Models

Tier	North America	Asia	Europe, Africa	Latin America
Professional Core	XPR 6100 /	XiR P8100 /	DP 3200 / 3400 /	DGP 4050 / 4150
Portables	6300 / 6350 /	P8200 / P8208 /	3401 / 3600 / 3601	/ 4150+ / 6150 /
	6380 / 6500 /	P8260 / P8268 /		6150+
	6550 / 6580	P8800 / P8808 /		
		P9260 / P9268		
Professional Core	XPR 4350 /	XiR M8220 /	DM 3400 / 3401 /	DGM 4100 /
Mobiles	4380 / 4550 /	M8228 / M8260 /	3600 / 3601	4100+ / 6100 /
	4580	M8268		6100+
Professional Enhanced	XPR 7150 /	CP7668	DP 3441 / 3661 /	DGP 5050 / 5550
Portables	7350 / 7380 /	GP 328D / 338D	4400 / 4401 /	/ 8050 / 8550 /
	7550 / 7580 /	XiR E8600 /	4600 / 4601 / 4800	MOTOTRBO R7
	MOTOTRBO R7	E8608 / E8628 /	/ 4801 /	
		P8600 / P8608 /	MOTOTRBO R7	
		P8620 / P8628 /		
		P8660 / P8668 /		
		P8800 / P8808 /		
		P8860 / P8868 /		
	\/DD 5050 /	MOTOTRBO R7	D14 4400 / 4404 /	DOM 5000 /
Professional Enhanced	XPR 5350 /	CM7668	DM 4400 / 4401 /	DGM 5000 /
Mobiles	5380 / 5550 /	XiR M8620 /	4600 / 4601	5500 / 8000 /
	5580	M8628 / M8660 /		8500
Entry Professional SL	SL 3500	M8668 SL 2M	SL 2600	SI 500
Entry Professional	XPR 3300 /	XiR P6600 /	DP 2400 / 2401 /	DEP 455 / 475 /
Portables	3350 / 3500	P6606 / P6608 /	2600 / 2601	550 / 570
Foliables	3330 / 3300	P6620 / P6626 /	2000 / 2001	3307370
		P6628		
Entry Professional	XPR 2500	XiR M6660	DM 2600	DEM 500
Mobile	741112000	All C Middle	DW 2000	DEIVI 000
Professional SL	SL 7550 / 7580 / 7590	SL 1K / 2K	SL4000 / 4010	SL8050 / 8550
Commercial SL	SL300	SL 1M / 2M	SL 1600 / 2600	SI 500
Commercial Portables	CP 100 / 200	XiR P3688	DP 1400	DEP 450
Commercial Mobiles	CM 200 / 300	XiR M3188 /	DM 1400 / 1600	DEM 300 / 400
		M3688		

Table 2-1. AutoTune Supported MOTOTRBO Models

3. Conventions

Standard Analog RX Signal. A -47 dBm RF carrier modulated at 60% rated channel deviation.

Standard Digital RX Signal. A -47 dBm RF carrier modulated with a O.153 test pattern on a 12.5 kHz channel.

Rated Audio. Approx. 7.75 V for MOTOTRBO Mobile and 2.82 V for MOTOTRBO Portable radios across an 8 ohm speaker.

Standard TX Signal. 1 kHz audio applied to the radio with modulation level adjusted until 60% rated channel deviation is achieved.

4. Requirements

Firmware. Minimum radio firmware versions in Table 4-1 are required for AutoTune servicing.

Tier	Examples	Minimum firmware revision
Professional Core	XPR 6550, XPR 4580	R01.08.10
Professional Enhanced	XPR 7350, XPR 5550, SL 7550	R02.30.01 ¹
Entry Professional	XPR 3350, XPR 2500	R01.00.00
Commercial	CP200d, CM200d	R01.00.00

Table 4-1. Minimum required firmware versions

Options. The following are required options for servicing MOTOTRBO radios.

Option Name	Reason
DMR Test Mode (R8-DMR)	Used to perform DMR Tx Tests and Digital
	Sensitivity tests.
Motorola MOTOTRBO (R8-AT_TRBO)	Motorola MOTOTRBO AutoTune.

Table 4-2. Required options

-

¹ Note: Firmware R02.50.xx contains a defect which prevents reading Modulation Balance test frequencies from the radio. This defect only affects Enhanced models. Please upgrade any Enhanced radios running this firmware to resolve defect-related test failures.

AutoTune™ User Guide

Test Accessories. The following are Motorola test aids required for servicing applicable MOTOTRBO radio models. For other regions, use Table 2-1. AutoTune Supported MOTOTRBO Models to map the equivalent radio mode.

Product	Model	Programming Cable	Battery Eliminator	Test Set	Antenna Test Adapter	Antenna Adapter Holder
CP100d	Н87	PMKN4128	PMDN4080_R	RLN4460	PMLN6154	PMLN7119
CP200d	H01	PMKN4128	0180305K08EPP	RLN4460	5886564Z01	N/A
XPR 3300 / 3500	H02	PMKN4117	PMNN4428	RLN4460	PMLN6154	PMLN6201
XPR 6100 / 6300 / 6350 / 6380 / 6500 / 6550 / 6580	H55	PMKN4012	PMNN4076	RLN4460	5880348B33	N/A
XPR 7500	H56	PMKN4012B+	PMLN6430	RLN4460	5880384G68	N/A
XPR 7350 / 7380 / 7550 / 7580	H56	PMKN4012B+	PMNN4428	RLN4460	PMLN6154	PMLN6155
SL300 / 3500	H88	CB000262A01 / CB000233A01	HW000405A02	RLN4460	TL000068A01	HW000406A02
SL7550 / 7580 / 7590	H81	25-124330-01R	PMNN4429	N/A	28012039001	7012042001
MOTOTRBO R7	H06	PMKN4231	BT000702A01	RLN4460	AY000811A01	5880384G68
CM200d / CM300d	M01	PMKN4147	N/A	RLN4460	N/A	N/A
XPR 2500	M02	PMKN4147 / PMKN4149	N/A	RLN4460	N/A	N/A
XPR 4350 / 4380 / 4550 / 4580	M27	PMKN4010 / PMKN4016 / HKN6184	N/A	RLN4460	N/A	N/A
XPR 5350 / 5380 / 5550 / 5580	M28	HKN6184	N/A	RLN4460	N/A	N/A

Table 4-3. Required test accessories.

5. Motorola MOTOTRBO™ Portable Radio Test Setup

Before servicing a radio with AutoTune, ensure the analyzer is running the current system software version. Each system version release contains issue resolutions and/or new/enhanced features.

- On the analyzer, navigate to Settings > About... Note the System version shown.
- Browse to the Astronics Test Systems software upgrades webpage: https://freedomcte.com/upgrades/
- If the first Current System Version shown on the webpage is more recent than the analyzer System version, follow the webpage instructions to download and apply the current system version software to your analyzer.

To perform test and alignment procedures, the MOTOTRBO™ Portable radio must be connected to the R8000 Communications System Analyzer as shown in the figure below.

Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform an alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

5.1. MOTOTRBO™ Portable Test Setup

Refer to the diagrams below for the proper test setup. Note that the correct setting for each RLN4460 test set control is highlighted in yellow.

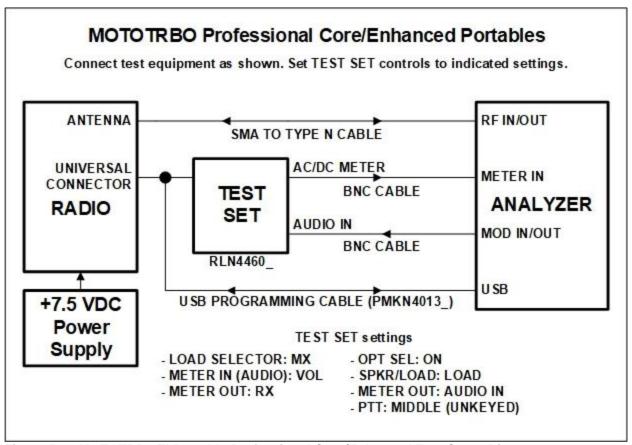


Figure 5-1. MOTOTRBO™ Portable Professional Core/Enhanced Test Setup Diagram

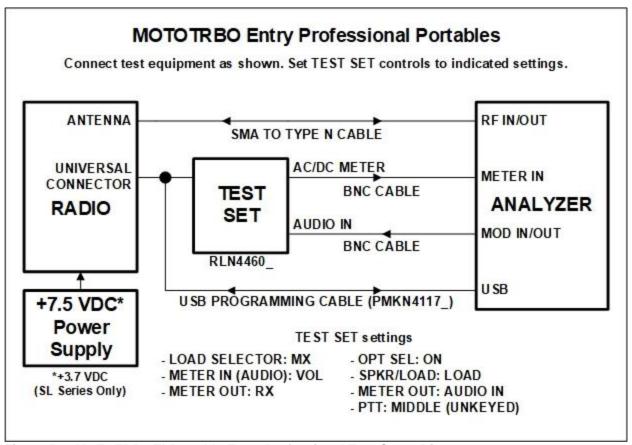


Figure 5-2. MOTOTRBO™ Portable Entry Professional Test Setup Diagram.

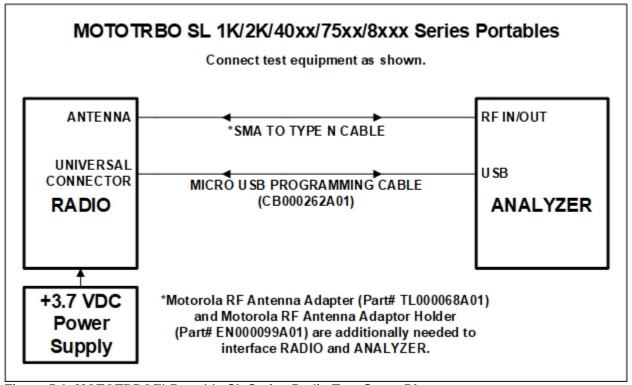


Figure 5-3. MOTOTRBO™ Portable SL Series Radio Test Setup Diagram.

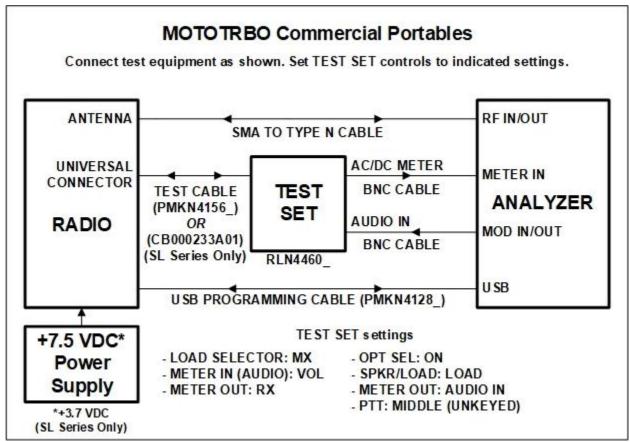


Figure 5-4. MOTOTRBO™ Portable Commercial Test Setup Diagram.

6. Motorola MOTOTRBO™ Portable Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency. Test Frequencies are band- and mode -specific. A table of the frequencies used by each band may be found in the respective radio service manual. See the References section for more details.

Note: All analyzer Mode settings are Standard unless otherwise indicated.

6.1. Reference Frequency

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF	Test	FM	30 dB
	IN/OUT	Frequency		

Table 6-1. Analyzer Configuration for Reference Frequency

6.1.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error after alignment
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-2. Reference Frequency alignment results

6.1.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

AutoTune™ User Guide

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Softpot	Radio softpot which yields Freq Error

Table 6-3. Reference Frequency test results

6.2. TX Power Out

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB

Table 6-4. Analyzer Configuration for TX Power Out

6.2.1. Alignment

The TX Power Out alignment aligns the power output level of the radio at both High and Low power levels. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency and the High power setting. For each test frequency, the output level is measured and then adjusted until near to a band-specific output level defined by the MOTOTRBO Tuner software help file.

Band	High Power Limits(W)	Low Power Limits(W)
VHF	5.0-6.0	1.0-1.6
UHF1	4.0-4.8	1.0-1.6
UHF2	4.0-4.8	1.0-1.6
UHF WB	4.0-4.8	1.0-1.6
350 MHz	4.0-4.8	1.0-1.6
800-900 MHz	2.5-2.8	1.0-1.6
XPR 6580 Canada	2.3-2.5	1.0-1.2

Table 6-5. Motorola specified target power

This process is repeated for the Low Power setting. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within manufacturer limits
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-6. TX Power Out alignment results

6.2.2. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the first TX Test Frequency, the output level is measured at each TX Test Frequency, for High Power and Low Power, and compared against test limits. The final results are written to the log file.

AutoTune™ User Guide

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out
Softpot	Radio softpot which yields Power Out

Table 6-7. TX Power Out test results

6.3. Modulation Balance

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB

Table 6-8. Analyzer Configuration for Modulation Balance test, alignment

6.3.1. Alignment

The radio is placed into Test Mode at the first TX Test Frequency and commanded to transmit. The radio generates a Low modulation tone and the RMS-averaged deviation of this tone is measured with the analyzer. The radio then generates a High modulation tone and the RMS-averaged deviation of this tone is measured with the analyzer. The radio softpot is adjusted until the deviation difference between the first and second tones is within test limits. This adjustment is performed for each TX Test Frequency. The results for each TX Test Frequency are written to the log file.

The Dev Ratio is calculated as:
$$DevRatio = 20 \log \left(\frac{Deviation_{LOW}}{Deviation_{HIGH}} \right)$$

Name	Description
Result	Pass or Fail. Calculated difference between Low and High tone
	deviation less than or equal to Dev Ratio.
Frequency	Test Frequency
Dev Ratio	Calculated difference, in dB, between Low and High tone deviation
Max Limit	Maximum passable ratio difference (inclusive) between low and high
	tone deviation.
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 6-9. Modulation Balance alignment results

6.3.2. Test

The radio is placed into Test Mode at the first TX Test Frequency and commanded to transmit. The analyzer applies an audio tone to the radio sufficient for the radio's deviation to achieve 60% rated deviation, RMS-averaged. For 25 kHz channel spacing, 60% of rated deviation (5 kHz) is 3 kHz. Once this 60% rated deviation level is achieved, the analyzer adjusts the audio level to 20 dB greater than that required to produce 60% rated deviation. The deviation level of this tone is measured with the analyzer. The percent difference is compared against test limits and written to the log file. This test is performed for each remaining TX Test Frequency.

AutoTune™ User Guide

Name	Description
Result	Pass or Fail. Deviation is less than or equal to Max Limit.
Frequency	Test Frequency
20dB Aud Lvl	Analyzer audio level used to produce Deviation
Deviation	Measured deviation level.
Max Limit	Maximum passable deviation (inclusive)
Softpot	Radio softpot which yields Deviation

Table 6-10. Modulation Balance test results

6.4. Front End Filter

Note: This alignment and test is not supported for 800/900 MHz radios. Selection of this alignment or test when testing a 800/900 MHz radio will always generate a Pass result and a note will appear on the test report indicating that this alignment or test is unsupported.

RF Control	Port	Frequency	Modulation	Attenuation
Generate	RF IN/OUT	Test Frequency	None;	30 dB

Table 6-11. Analyzer Configuration for Front End Filter test, alignment

6.4.1. Alignment

The radio is placed into Test Mode at the RX Test Frequencies specified by Motorola MOTOTRBO Tuner. At each of the test frequencies, the radio receives a -70 dBm signal with no modulation from the analyzer. The radio then automatically tunes a softpot value for that frequency. Once an autotuned value is generated for all RX Test Frequencies, updated softpots are calculated for all other test frequencies and applied to the radio. The results for all RX Test Frequencies are written to the log file.

Name	Description
Result	Pass. Alignment success is determined by a follow-up Front End
	Filter test.
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 6-12. Front End Filter alignment results

6.4.2. Test

The analyzer is setup by applying a Standard Analog RX Signal to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted to -116 dBm. SINAD is measured and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is less than or equal to Max Limit.
Frequency	Test Frequency
SINAD	Measured SINAD level
Min Limit	Minimum passable SINAD (exclusive)

Table 6-13. Front End Filter test results

6.5. Front End Gain and Attenuation

RF Control	Port	Frequency	Modulation	Attenuation
Generate	RF IN/OUT	Test Frequency	None;	30 dB

Table 6-14. Analyzer Configuration for FE Gain and Attenuation alignment

6.5.1. Alignment

The radio is placed into Test Mode at the RX Test Frequencies specified by Motorola MOTOTRBO Tuner. At each of the test frequencies, the radio receives a -80 dBm signal with no modulation from the analyzer. The radio then computes and returns the RSSI and Front End attenuator values for that frequency. Updated softpots are calculated and applied to the radio. The results are written to the log file.

Name	Description
Result	Pass. Alignment success is determined by a follow-up Front End
	Filter test.
Frequency	Test Frequency
FE Gain SP	Front End Gain softpot setting
FE Gain (dB)	Measured RF receiver gain (dB)
Attn SP	Front End Attenuation softpot value
Attn Gain (dB)	Attenuation of RX diode in Front End

Table 6-15. Front End Gain and Attenuation alignment results

6.5.2. Test

No test is needed.

6.6. Distortion

This is a test only; there is no alignment.

RF Control	Port	Frequency
Generate	RF IN/OUT	Test Freq

Table 6-16. Analyzer Configuration for Distortion Test

6.6.1. Alignment

No alignment is needed.

6.6.2. Test

The analyzer is setup by applying a Standard Analog RX Signal to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at a RX Test Frequency. The audio signal's distortion level is then measured and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Distortion level within Max Limit, Min Limit
Frequency	Test Frequency
Distortion	Measured audio signal distortion level
Max Limit	Maximum Limit (inclusive) for Distortion to Pass

Table 6-17. Distortion test results

6.7. Sensitivity (SINAD)

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3kHz deviation	-50 dBm

Table 6-18. Analyzer Configuration for Sensitivity (SINAD) test

6.7.1. Alignment

No alignment is needed.

6.7.2. Test

The analyzer is setup by applying a Standard Analog RX Signal to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures 12 dB
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass

Table 6-19. Sensitivity (SINAD) test results

6.8. Digital Sensitivity (RX BER)

NOTE: This test requires an analyzer with DMR test mode capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA standard BER rate is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Frequency	O.153 Test Pattern	-116.0 dBm

Table 6-20. Analyzer Configuration for Digital Sensitivity (RX BER) test

6.8.1. Alignment

No alignment is needed.

6.8.2. Test

The analyzer is setup by applying a Standard Digital RX Signal to the radio. The radio is placed into Test Mode at a RX Test Frequency, ready to receive a DMR-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (RX BER) output level within Max
	Limit
Frequency	Test Frequency
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (RX BER) to Pass

Table 6-21. Digital Sensitivity (RX BER) test results

6.9. Digital Sensitivity (TX BER)

NOTE: This test requires an analyzer with DMR test mode capability.

The purpose of this procedure is to measure the radio transmitter's Bit Error Rate at a given frequency. The target BER rate is 0%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation
Monitor	RF IN/OUT	Test Frequency	O.153 Test Pattern

Table 6-22. Analyzer Configuration for Digital Sensitivity (TX BER) test

6.9.1. Alignment

No alignment is needed.

6.9.2. Test

The analyzer is setup via the configuration section at the beginning of this section. The radio is placed into Test Mode at a TX Test Frequency, ready to generate a O.153 test pattern DMR-modulated signal to the analyzer. The radio is keyed and its BER error measured by the analyzer. The measured radio TX BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (TX BER) output level within Max Limit
Frequency	Test Frequency
BER	Measured radio BER error
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (TX BER) to Pass

Table 6-23. Digital Sensitivity (TX BER) test results

6.10. Internal Voice Modulation

The purpose of this procedure is to test the ability of the radio's internal microphone audio circuit to accurately transfer the received signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-24. Analyzer Configuration for Internal Voice Modulation test

6.10.1. Alignment

No alignment is needed.

6.10.2. Test

The radio is placed into Test Mode at a TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The user is instructed to key the connected radio and place it next to the analyzer speaker (see Figure 6-1). The user is also instructed to adjust the analyzer volume until about 4 kHz deviation is seen on the analyzer display (see Figure 6-2). The deviation level is then measured by the analyzer and the user is instructed when to un-key the radio. The measured deviation is compared against test limits and the final results are written to the log file.

Figure 6-1. Place keyed radio next to analyzer speaker.

AutoTune™ User Guide

Figure 6-2. Adjust analyzer volume until about 4 kHz deviation is measured.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 6-25. Internal Voice Modulation test results

6.11. External Voice Modulation

The purpose of this procedure is to test the ability of an external microphone attached to the radio to effectively transfer the received signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-26. Analyzer Configuration for External Voice Modulation test

6.11.1. Alignment

No alignment is needed.

6.11.2. Test

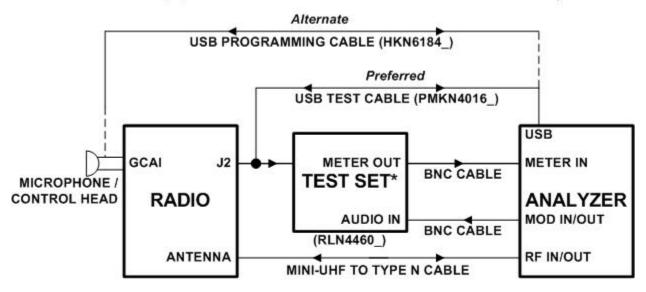
The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The analyzer generates a 1 kHz signal at 80 mV into the radio's external microphone accessory port via the radio test set. The radio is commanded to transmit and the resulting Power-Weight averaged deviation level is then measured by the analyzer. The measured deviation is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 6-27. External Voice Modulation test results

7. Motorola MOTOTRBO™ Mobile Radio Test Setup

In order to perform the test and alignment procedures, the MOTOTRBO™ Mobile radio must be connected to the R8000 Communications System Analyzer as shown in the figure below.


Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform the indicated alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

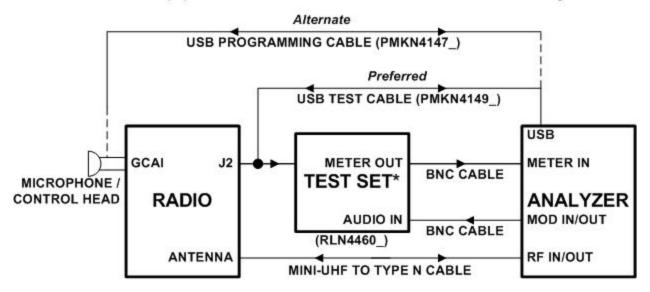
7.1. MOTOTRBO™ Mobile Test Setup

Refer to the diagrams below for the proper test setup. Note that the correct setting for each applicable RLN4460 test set control is listed at the bottom of each diagram.

MOTOTRBO Professional Core/Enhanced Mobiles

Connect test equipment as shown. Set TEST SET controls to indicated settings.

^{*}Required only for Modulation Balance, Front End Filter, Distortion and Sensitivity (SINAD) tests.


TEST SET settings

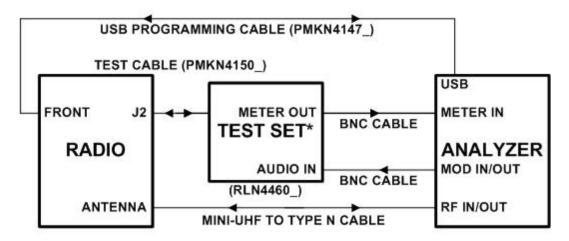
- LOAD SELECTOR: MX
- METER IN (AUDIO): VOL
- METER OUT: RX
- OPT SEL: ON
- SPKR/LOAD: LOAD
- METER OUT: AUDIO IN
- PTT: MIDDLE (UNKEYED)

Figure 7-1. MOTOTRBO™ Mobile Professional Core/Enhanced Test Setup Diagram.

MOTOTRBO Entry Professional Mobiles

Connect test equipment as shown. Set TEST SET controls to indicated settings.

^{*}Required only for Modulation Balance, Front End Filter, Distortion and Sensitivity (SINAD) tests.


TEST SET settings

- LOAD SELECTOR: MX
- METER IN (AUDIO): VOL
- METER OUT: RX
- OPT SEL: ON
- SPKR/LOAD: LOAD
- METER OUT: AUDIO IN
- PTT: MIDDLE (UNKEYED)

Figure 7-2. MOTOTRBO™ Mobile Entry Professional Test Setup Diagram.

MOTOTRBO Commerical Mobiles

Connect test equipment as shown. Set TEST SET controls to indicated settings.

^{*}Required only for Modulation Balance, Front End Filter, Distortion and Sensitivity (SINAD) tests.

TEST SET settings

- LOAD SELECTOR: MX - OPT SEL: ON

- METER IN (AUDIO): VOL - SPKR/LOAD: LOAD

- METER OUT: RX - METER OUT: AUDIO IN - PTT: MIDDLE (UNKEYED)

Figure 7-3. MOTOTRBO™ Mobile Commercial Test Setup Diagram.

8. Motorola MOTOTRBO™ Mobile Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency that are band- and mode -specific. A table of the frequencies used by each band may be found in the respective radio service manual. See the References section for more details.

Note: All analyzer Mode settings are Standard unless otherwise indicated.

Warning: During performance of the Front End Filter, Distortion, and Sensitivity (SINAD) tests, audio will be heard coming from the radio's internal speaker. Unfortunately, this audio is necessary for testing and cannot be muted by the AutoTune software. If desired, strips of duct tape or sound-deadening foam may be placed across the radio's internal speaker grille to reduce the audio level.

8.1. Reference Frequency

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF	Test	FM	30 dB
	IN/OUT	Frequency		

Table 8-1. Analyzer Configuration for Reference Frequency

8.1.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Name	Description		
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit		
Frequency	Test Frequency		
Freq Error	Measured frequency error after alignment		
Min Limit	Minimum Limit (inclusive) for frequency error		
Max Limit	Maximum Limit (inclusive) for frequency error		
Old Softpot	Original radio softpot setting		
New Softpot	Radio softpot after alignment		

Table 8-2. Reference Frequency alignment results

8.1.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

Name	Description	
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit	
Frequency	Test Frequency	
Freq Error	Measured frequency error	
Max Limit	Maximum Limit (inclusive) for frequency error	
Min Limit	Minimum Limit (inclusive) for frequency error	
Softpot	Radio softpot which yields Freq Error	

Table 8-3. Reference Frequency test results

8.2. TX Power Out

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 8-4. Analyzer Configuration for TX Power Out

8.2.1. Alignment

The TX Power Out alignment adjusts the Power Characterization Points for each Test Frequency to account for the variability of the power detection circuitry between radios. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency. For each Power Characterization Point, the radio output level is measured and then adjusted until near to a band-specific and power characterization point-specific output level. New softpot values are calculated based on the resulting power characterization points and then programmed into the radio. The results are then written to the log file.

After all Power Characterization Points for all Test Frequencies have been aligned, the radio performs a verification at both High and Low power levels beginning at the first Test Frequency using the power limits defined in the Motorola MOTOTRBO Tuner help file.

Band	Low Power Limits (W)	High Power Limits (W)
VHF	1.0-1.2	26.0-29.0
VHF (High Power)	26.0-29.0	40.0-50.0
UHF1	1.0-1.2	26.0-29.0
UHF1 (High Power)	26.0-29.0	40.0-48.0
UHF2 (450-512 MHz)	1.0-1.2	40.0-48.0
UHF2 (512-527 MHz)	1.0-1.2	26.0-29.0
350 MHz	1.0-1.2	26.0-29.0
350 MHz (High Power)	1.0-1.2	40.0-48.0
800MHz	10.0-12.0	35.0-42.0
900MHz	10.0-12.0	30.0-36.0

Table 8-5 Motorola MOTOTRBO™ Mobile specified target power

This process is repeated for all test frequencies. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Meas Power within manufacturer limits
Power Point	Power Characterization Point
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 8-6. TX Power Out alignment results

After the TX Power Out alignment is complete, the power output level is measured again at each TX Test Frequency for both High and Low power levels and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 8-7. TX Power Out alignment results

8.2.2. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the first TX Test Frequency, the output level is measured at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 8-8. TX Power Out test results

8.3. Deviation Balance

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	20 dB

Table 8-9. Analyzer Configuration for Deviation Balance test, alignment

8.3.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates an 80 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The radio softpot is adjusted until the deviation difference between the first and second tones is as small as possible. This adjustment is performed for each TX Test Frequency and the percent difference is compared against test limits. The results for each TX Test Frequency are written to the log file.

Dual-Band: This alignment is performed consecutively for all test frequencies in both bands.

Name	Description
Result	Pass or Fail. Percent difference between low and high tone
	deviation less than or equal to Variance.
Frequency	Test Frequency
Variance	Measured difference between low and high tone deviation
Max Limit	Maximum passable percent difference (inclusive) between low and
	high tone deviation
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 8-10. Deviation Balance alignment results

8.3.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates an 80 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The percent difference is compared against test limits and written to the log file. This test is performed for each remaining TX Test Frequency.

Dual-Band: This test is performed consecutively for all test frequencies in both bands.

Name	Description
Result	Pass or Fail. Percent difference between low and high tone
	deviation less than or equal to Variance.
Frequency	Test Frequency
Variance	Measured difference between low and high tone deviation
Max Limit	Maximum passable percent difference (inclusive) between low and
	high tone deviation

Table 8-11. Deviation Balance test results

8.4. Front End Filter

Note: This alignment and test is not supported for 800/900 MHz radios. Selection of this alignment or test when testing an 800/900 MHz radio will always generate a Pass result and a note will appear on the test report indicating that this alignment or test is unsupported.

RF Control	Port	Frequency	Modulation	Attenuation
Generate	RF IN/OUT	Test Frequency	None;	30 dB

Table 8-12. Analyzer Configuration for Front End Filter test, alignment

8.4.1. Alignment

The radio is placed into Test Mode at the RX Test Frequencies specified by Motorola MOTOTRBO Tuner. At each of the test frequencies, the radio receives a -70 dBm signal with no modulation from the analyzer. The radio then automatically tunes a softpot value for that frequency. Once an autotuned value is generated for all RX Test Frequencies, updated softpots are calculated for all other test frequencies and applied to the radio. The results for all RX Test Frequencies are written to the log file.

Name	Description
Result	Pass. Alignment success is determined by a follow-up Front End
	Filter test.
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 8-13. Front End Filter alignment results

8.4.2. Test

The analyzer is setup by applying a Standard Analog RX Signal to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted to -116 dBm. SINAD is measured and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation is less than or equal to Max Limit.
Frequency	Test Frequency
SINAD	Measured SINAD level
Min Limit	Minimum passable SINAD (exclusive)

Table 8-14. Front End Filter test results

8.5. Front End Gain and Attenuation

RF Control	Port	Frequency	Modulation	Attenuation
Generate	RF IN/OUT	Test Frequency	None;	30 dB

Table 8-15. Analyzer Configuration for FE Gain and Attenuation alignment

8.5.1. Alignment

The radio is placed into Test Mode at the RX Test Frequencies specified by Motorola MOTOTRBO Tuner. At each of the test frequencies, the radio receives a -80 dBm signal with no modulation from the analyzer. The radio then computes and returns the RSSI and Front End attenuator values for that frequency. Updated softpots are calculated and applied to the radio. The results are written to the log file.

Name	Description
Result	Pass. Alignment success is determined by a follow-up Front End
	Filter test.
Frequency	Test Frequency
FE Gain SP	Front End Gain softpot setting
FE Gain (dB)	Measured RF receiver gain (dB)
Attn SP	Front End Attenuation softpot value
Attn Gain (dB)	Attenuation of RX diode in Front End

Table 8-16. Front End Gain and Attenuation alignment results

8.5.2. Test

No test is needed.

8.6. Distortion

This is a test only; there is no alignment.

RF Control	Port	Frequency
Generate	RF IN/OUT	Test Freq

Table 8-17. Analyzer Configuration for Distortion Test

8.6.1. Alignment

No alignment is needed.

8.6.2. Test

The analyzer is setup by applying a Standard Analog RX Signal to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at a RX Test Frequency. The audio signal's distortion level is then measured and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Distortion level within Max Limit, Min Limit
Frequency	Test Frequency
Distortion	Measured audio signal distortion level
Max Limit	Maximum Limit (inclusive) for Distortion to Pass

Table 8-18. Distortion test results

8.7. Sensitivity (SINAD)

This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 1 kHz @ 3kHz deviation	-50 dBm

Table 8-19. Analyzer Configuration for Sensitivity (SINAD) test

8.7.1. Alignment

No alignment is needed.

8.7.2. Test

The analyzer is setup by applying a Standard Analog RX Signal to the radio and then adjusting radio volume for Rated Audio. The radio is placed into Test Mode at the first RX Test Frequency. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures 12 dB
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass

Table 8-20. Sensitivity (SINAD) test results

8.8. Digital Sensitivity (RX BER)

NOTE: This test requires an analyzer with DMR test mode capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA standard BER rate is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Frequency	O.153 Test Pattern	-116.0 dBm

Table 8-21. Analyzer Configuration for Digital Sensitivity (RX BER) test

8.8.1. Alignment

No alignment is needed.

8.8.2. Test

The analyzer is setup by applying a Standard Digital RX Signal to the radio. The radio is placed into Test Mode at a RX Test Frequency, ready to receive a DMR-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (RX BER) output level within Max
	Limit
Frequency	Test Frequency
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (RX BER) to Pass

Table 8-22. Digital Sensitivity (RX BER) test results

8.9. Digital Sensitivity (TX BER)

NOTE: This test requires an analyzer with DMR test mode capability.

The purpose of this procedure is to measure the radio transmitter's Bit Error Rate at a given frequency. The target BER rate is 0%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation
Monitor	RF IN/OUT	Test Frequency	O.153 Test Pattern

Table 8-23. Analyzer Configuration for Digital Sensitivity (TX BER) test

8.9.1. Alignment

No alignment is needed.

8.9.2. Test

The analyzer is setup via the configuration section at the beginning of this section. The radio is placed into Test Mode at a TX Test Frequency, ready to generate a O.153 test pattern DMR-modulated signal to the analyzer. The radio is keyed and its BER error measured by the analyzer. The measured radio TX BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (TX BER) output level within Max
	Limit
Frequency	Test Frequency
BER	Measured radio BER error
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (TX BER) to Pass

Table 8-24. Digital Sensitivity (TX BER) test results

8.10. Internal Voice Modulation

The purpose of this procedure is to test the ability of the radio's internal microphone audio circuit to accurately transfer the received signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 8-25. Analyzer Configuration for Internal Voice Modulation test

8.10.1. Alignment

No alignment is needed.

8.10.2. Test

The radio is placed into Test Mode at a TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The user is instructed to key the connected radio and place it next to the analyzer speaker (see Figure 8-1). The user is also instructed to adjust the analyzer volume until about 4 kHz deviation is seen on the analyzer display (see Figure 8-2). The deviation level is then measured by the analyzer and the user is instructed when to un-key the radio. The measured deviation is compared against test limits and the final results are written to the log file.

Figure 8-1. Place keyed radio next to analyzer speaker.

Figure 8-2. Adjust analyzer volume until about 4 kHz deviation is measured.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 8-26. Internal Voice Modulation test results

8.11. External Voice Modulation

The purpose of this procedure is to test the ability of an external microphone attached to the radio to effectively transfer the received signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 8-27. Analyzer Configuration for External Voice Modulation test

8.11.1. Alignment

No alignment is needed.

8.11.2. Test

The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The analyzer generates a 1 kHz signal at 800 mV into the radio's external microphone accessory port via the radio test set. The radio is commanded to transmit and the resulting deviation level is then measured by the analyzer. The measured deviation is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 8-28. External Voice Modulation test results

9. Basic Troubleshooting

5. Busic Troublesho		
Symptom	Possible Cause	Possible Solution
MOTOTRBO Mobile radio	Loose PMKN4016_	Verify cable connection is OK.
won't power up	cable connection	
	Motorola CPS	Use Motorola CPS software to
	Ignition Switch	set Radio Wide, Advanced,
	setting	Ignition Switch setting to "Blank".
		This setting lets radio power up
		for testing without an ignition
		signal present. Be sure to return
		this setting to its original value
		when testing completed.
Analyzer consistently fails	Worn programming	Verify programming cable
to communicate with	cable connection	connection to radio is sound.
MOTOTRBO portable		Using same connection, verify
radio		radio can be queried using
		Motorola Tuner software.
	Radio firmware	See section 4 for minimum
	version doesn't	firmware version requirements.
	support AutoTune	
Radio consistently fails TX	MOTOTRBO Family	Using MOTOTRBO Family CPS,
Power Out test and/or	CPS Transmit Power	adjust Codeplug Configuration
alignment	Level settings	Mode>Radio Wide>Transmit
	limiting radio output	Power Level settings to factory
	power.	defaults. This change lets radio
		output expected power levels for
		correct AutoTune TX Power Out
		testing and alignment.
Modulation Balance test	Enhanced radio	Radio firmware R02.50.xx
and/or alignment	model running	contains a defect which prevents
consistently fails. Odd test	R02.50.xx firmware.	reading Modulation Balance test
frequencies are present for		frequencies from the radio. This
Modulation Balance test		defect only affects Enhanced
report results.		models. Please upgrade any
		Enhanced radios running this
		firmware to resolve Modulation
		Balance test failures.
Front End Filter test fails	Poor RF cable	Use a known good quality RF
one or more points.		cable when performing the Front
		End Filter alignment or test.
		Recommended cable:
		MegaPhase RF Orange™ Type
		N to BNC cable.

Symptom	Possible Cause	Possible Solution
Cannot adjust measured deviation during Internal Voice Modulation test.	General Settings > Mic Selection Rule set to 'Default.'	When Mic Selection Rule is set to Default, the external microphone is effectively always on, preventing the radio's internal microphone from picking up audio. For the Internal Voice Modulation test to work, the radio's internal microphone must be enabled. Change the Mic Selection Rule setting to 'Mic Follow PTT' to allow radio internal microphone to be enabled when the radio PTT is pressed.

Table 9-1. AutoTune Troubleshooting Chart

10. Support Information

10.1. Technical Support

Document Library: freedomcte.com/library/
Video Library: freedomcte.com/videos/

Phone: 903.985.8999

Email: Freedom.TechnicalSupport@astronics.com

10.2. Sales Support

Phone: 903.985.8999

Email: LMRSales@astronics.com

11. References

MOTOTRBO™PORTABLE BASIC SERVICE MANUAL (6880309T30 -F)

MOTOTRBO™PORTABLE BASIC SERVICE MANUAL (68009271001-C)

MOTOTRBO™ Mobile Basic Service Manual (68009272001-A)

APPENDIX A. Sample Test Result Report

		-	Test Result	Report				
	ne: 8/28/2023				rator ID: Tec			
Info								
Analyzer								
Ref Cloc Applicat RF Level RF In/Ou RF Gen O Cable Sw Selected	e: k Mode: ion: Offset: ut Offset: but Offset: veep:	off						
	tenuation:	0.000 dB						
Radio Model #: Serial # Radio Ho DSP: Region: RF Band:	:: :st:	H88JCP9JA2AI 546TSV3940 R01.01.49.00 R01.01.49.00 AA VHF	N:SL300 000 000					
Referenc	e Frequency	Align						
====== Result	Frequency	Freq Error	Min Limit	Max Limit	Old Softpot	New So	ftpot	
Pass	173.9850 MHz	-1 Hz	-40 Hz	40 Hz	-496	-1200		
	Out Align H							
Result Pass Pass Pass Pass Pass Pass	Frequency 136.0350 MHz 142.5350 MHz 148.9350 MHz 155.4350 MHz 161.8350 MHz 167.3350 MHz	Power Out 3.1 W 3.1 W 3.1 W 3.2 W 3.2 W 3.2 W	Min Limit 2.7 W 2.7 W 2.7 W 2.7 W 2.7 W 2.7 W 2.7 W	Max Limit 3.5 W 3.5 W 3.5 W 3.5 W 3.5 W	old Softpot 	New Sof 855 849 846 851 891 894	tpot 	
			2.7 W	3.5 W	863	863		
=======	Out Align Lo	===	Min Limit	May Limit	old softnot	Now Sof	tnot	
Pace	136 0350 MHz	1 2 W	0 9 W	1 5 W	Old Softpot	777		
Pass Pass Pass Pass Pass Pass	142.5350 MHz 148.9350 MHz 155.4350 MHz 161.8350 MHz 167.3350 MHz 173.9850 MHz	1.2 W 1.2 W 1.1 W 1.3 W 1.3 W 1.3 W	0.9 W 0.9 W 0.9 W 0.9 W 0.9 W 0.9 W	1.5 W 1.5 W 1.5 W 1.5 W 1.5 W 1.5 W	777 773 768 763 762 764 767	773 768 763 762 764 767		
Modulati	on Balance A	lign						
			o Max Limi	t Old Sof	tpot New Sof	tpot		
Pass	136.000000 MI 146.000000 MI 159.000000 MI 167.000000 MI 168.000000 MI 170.000000 MI 172.000000 MI 174.000000 MI	HZ 0.00 dB	+/-0.05	dB 375	375 445 515 538 540 547 553 559			
	on Balance To							
Result	Frequency	20dB Aud			imit Softpot			
Pass Pass Pass Pass Pass Pass	136.000000 MI 146.000000 MI 159.000000 MI 167.000000 MI 168.000000 MI 170.000000 MI 172.000000 MI 174.000000 MI	HZ 0.110 V HZ 0.120 V HZ 0.110 V HZ 0.120 V HZ 0.110 V HZ 0.120 V	4.37 4.38 4.38 4.38 4.37 4.38	kHz 5.00 kHz 5.00 kHz 5.00 kHz 5.00 kHz 5.00	kHZ 445 kHZ 515 kHZ 538 kHZ 540 kHZ 547 kHZ 553			
	d Filter Ali							
Result	Frequency 0	ld Softpot			======			
			N/A					
====== Result 	d Gain and A ====================================	FE Gain SP	=====		.SP Attn Gai 0.01 dB		Int Attn SP 2863	Int Gain (d
Distorti ====== Result	on Test - Un: ====================================	supported fo ======= istortion Ma	r Enhanced :	SL Series m	odels			

Pass	N/A N/	'A N	I/A			
Sensiti	vity (SINAD) T	est - Unsup	ported for E	nhanced SL Seri	es models	
Result	Frequency 12	db Sinad M	Max Limit		=======	
	N/A N/					
FSK Err						
_		FSK Error				
Pass Pass Pass Pass Pass Pass	Frequency 	1.098 % 0.996 % 0.991 % 1.005 % 1.026 % 1.144 % 1.019 %	5 % 5 % 5 % 5 % 5 %			
Symbol	Deviation					
Result	Frequency	Symbol Dev	Min Limit	Max Limit		
Pass Pass Pass Pass Pass Pass	136.0350 MHz 142.5350 MHz 148.9350 MHz 155.4350 MHz 161.8350 MHz 167.3350 MHz 173.9850 MHz	1901 Hz 1905 Hz 1899 Hz 1895 Hz 1899 Hz 1894 Hz 1900 Hz	1750 Hz 1750 Hz 1750 Hz 1750 Hz 1750 Hz 1750 Hz 1750 Hz 1750 Hz	2138 Hz 2138 Hz 2138 Hz 2138 Hz 2138 Hz 2138 Hz 2138 Hz 2138 Hz		
Magnitu	de Error					
Result	Frequency					
Pass Pass Pass Pass Pass Pass Pass	136.0350 MHz 142.5350 MHz 148.9350 MHz 155.4350 MHz 161.8350 MHz 167.3350 MHz 173.9850 MHz	0.252 % 0.243 % 0.257 % 0.240 % 0.262 % 0.205 % 0.200 %	1 % 1 % 1 % 1 % 1 % 1 %			
	Sensitivity ((TX BER) Tes	st			
Result	Frequency					
Pass	155.4350 MHz	0.00 % 0.	00 %			
	Digital Sensitivity (RX BER) Test					
Result	Frequency	5% BER				
	173.9550 MHz					
Internal Voice Modulation Test - Unsupported for Enhanced SL Series models						
Result	Frequency De	viation Mi	n Limit Max	Limit 		
Pass	N/A N/	'A N/	'A N/A			
External Voice Modulation Test						
				Max Limit 		
Pass	155.4350 MHz	4.3 kHz	4.0 kHz	5.0 kHz		
Tests p	Tests performed by AutoTune © 2023 Astronics Test Systems. All Rights Reserved.					

Figure A-1. Sample Test Result Report

APPENDIX B. Revision History

B-Supported Models, options	M. Mullins	M. Hammer	5/1/24	0438
A-from CG1372	M. Mullins	M. Humphries	7/24/17	<u>0139</u>
Rev. No/change	Requested By	Approved By	Date	ECO#