

R8000 SERIES COMMUNICATIONS SYSTEM ANALYZER

AUTOTUNE USER GUIDE

Kenwood Viking Portable Radios Kenwood Viking Mobile Radios

Freedom Communication Technologies 2002 Synergy Blvd, Suite 200 Kilgore, Texas 75662

Copyright © 2022 Freedom Communication Technologies All Rights Reserved Printed in U.S.A.

FCT-1383A

AUTOTUNE™ SOFTWARE LICENSE AGREEMENT

The software license agreement governing use of the R8000 Series Communications System Analyzer AutoTune™ software is located in FCT-1365 R8000 Series Communications System Analyzer Operator's Manual.

TRADEMARKS

The Freedom Communication Technologies logo and Freedom Communication Technologies are registered ® trademarks of Freedom Communication Technologies.

NXDN[™] is a trademark of Icom America, Inc. and JVCKenwood Corporation.

OpenG License Copyright (c) 2002, Cal-Bay Systems, Inc. <info@calbay.com> Copyright (c) 2002, Jean-Pierre Drolet <drolet_jp@hotmail.com> Copyright (c) 2002-2007, Jim Kring <jim@jimkring.com> Copyright (c) 2002-2005, Rolf Kalbermatter <rolf.kalbermatter@citeng.com> Copyright (c) 2003-2004, Paul F. Sullivan <Paul@SULLutions.com> Copyright (c) 2004, Enrique Vargas <vargas@visecurity.com> Copyright (c) 2004, Heiko Fettig <heiko.fettig@gmx.net> Copyright (c) 2004, Michael C. Ashe <michael.ashe@imaginatics.com> Copyright (c) 2005-2006, MKS Instruments, Inc., author: Doug Femec <doug femec@mkinst.com>, IM dafemec Copyright (c) 2006, JKI <info@jameskring.com> Copyright (c) 2006, JKI <info@jameskring.com>; Authors: Jim Kring <jim@jimkring.com>, Philippe Guerit <pjm_labview@yahoo.com> Copyright (c) 2007, JKI <info@jameskring.com> (Author: Jim Kring) <jim.kring@jameskring.com>) Copyright (c) 2008, Ton Plomp <t.c.plomp@gmail.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the SciWare, James Kring, Inc., nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MGI License Copyright (c) 2010-2013, Moore Good Ideas, inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of Moore Good Ideas, Inc., nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TABLE OF CONTENTS

1. Introduction	1
2. Scope	1
2.1. Supported Models	1
2.2. Firmware Versions	1
3. Conventions	2
3.1. PPM	2
4. Kenwood Viking Portable Radio Test Setup	3
4.1. Cable Sweep	3
4.2. Battery Eliminator	3
4.3. Viking Portable Test Setup	3
5. Kenwood Viking Portable Alignment and Test Descriptions	5
5.1. Assist	5
5.2. Ramp Offset	6
5.3. Rx Filters	7
5.4. TCXO Frequency	8
5.5. Tx Modulation (Balance)	9
5.6. Tx Power	11
5.7. Squelch	12
5.8. Rx Sensitivity	13
5.9. P25 Tx Tests	14
5.10. Sensitivity (P25 BER)	15
6. Kenwood Viking Mobile Radio Test Setup	16
6.1. Cable Sweep	16
6.2. Viking Mobile Test Setup	16
6.3. Kenwood Viking Mobile USB Cables	18
7. Kenwood Viking Mobile Alignment and Test Descriptions	20
7.1. Tx Max Power	20
8. Basic Troubleshooting	22
9. Support Information	23
9.1. Technical Support	23
9.2. Sales	23
APPENDIX A. Test Limits	. A-1
APPENDIX B. Sample Test Result Report	. B-1
APPENDIX C. Revision History	. C-1

LIST OF FIGURES

Figure 4-1.	Viking Portable Test Setup Diagram with Freedom 203012-01 Cable	
Figure 6-1. Box	Viking Mobile Test Setup Diagram with 203013-01 Audio Interface	+ 7
Figure 6-2.	Viking Mobile Test Setup Diagram with Freedom 203014-01 Cable.	3
Figure B-1.	Sample Test Result ReportB-3	3

LIST OF TABLES

Table 5-1. Assist Voltage alignment results	5
Table 5-2. Ramp Offset alignment results	6
Table 5-3. Analyzer Configuration for Rx Filters	7
Table 5-4. Rx Filters Sensitivity (SINAD) alignment results	7
Table 5-5. Rx Filters Sensitivity (RSSI) alignment results	7
Table 5-6. Analyzer Configuration for TCXO Frequency	8
Table 5-7. TCXO Frequency alignment results	8
Table 5-8. TCXO Frequency test results	8
Table 5-9. Analyzer Configuration for Tx Modulations alignment	9
Table 5-10. Tx Modulation alignment results	9
Table 5-11. Tx Modulation Fine Tune alignment results	9
Table 5-12. Analyzer Configuration for Tx Power	11
Table 5-13. Tx Power alignment results	11
Table 5-14. Tx Power test results	11
Table 5-15. Analyzer Configuration for Squelch	12
Table 5-16. Squelch alignment results	12
Table 5-17. Analyzer Configuration for Rx Sensitivity test	13
Table 5-18. Rx Sensitivity test results	13
Table 5-19. Analyzer Configuration for P25 Tx Tests	14
Table 5-20. Tx P25 Modulation Fidelity results	14
Table 5-21. Tx P25 Symbol Deviation results	14
Table 5-22. Analyzer Configuration for Sensitivity (P25 BER) test	15
Table 5-23. Sensitivity (P25 BER) test results	15
Table 7-1. Analyzer Configuration for Tx Max Power	20
Table 7-2. Kenwood Viking Mobile specified target max power	20
Table 7-3. Tx Max Power alignment results	21
Table 8-1. Kenwood Viking Series Troubleshooting Chart	22

1. Introduction

The Freedom Communication Technologies R8000 Series Communications System Analyzer AutoTune™ (hereafter "AutoTune") provides an automated test and alignment solution for supported two-way radios.

2. Scope

This document includes information regarding the tests and alignments performed for supported radios by AutoTune. This document is restricted to radio-specific information for Kenwood Viking Portable and Viking Mobile radios.

Please refer to the R8000 Series Communications System Analyzer Owner's Manual (FCT-1365) for an overview and basic operating instructions for AutoTune itself.

2.1. Supported Models

The following Kenwood Viking models are supported:

- VP5230
- VP5330
- VP5430
- VP6230
- VP6330
- VP6430
- VM5730
- VM5830
- VM5930
- VM6730
- VM6830
- VM6930
- VM7630H
- VM7730
- VM7730H
- VM7830
- VM7930

2.2. Firmware Versions

To perform AutoTune servicing, a Viking radio should be running **8.34.xx** or later firmware. If a Viking radio is running **8.32.xx** or earlier firmware, the radio **must** have an analog channel available in its codeplug and this channel must be selected prior to starting AutoTune servicing. There are various edge cases where not being on an analog conventional channel with **8.32.xx** or earlier Viking firmware prevent the radio from entering tune mode successfully.

If the Viking radio is running **8.32.xx** or earlier firmware and not on an analog conventional channel, an AutoTune warning message will appear, and radio servicing will stop.

3. Conventions

3.1. PPM

"ppm" is "parts per million". This specification is generally limited to frequency-related measurements. If the frequency units are in MHz, then the ppm specification is in Hz. For example, a 169.075 MHz frequency with a \pm 1.5 ppm specification is allowed to vary by 1.5 * 169.075 MHz, or about \pm 254 Hz.

4. Kenwood Viking Portable Radio Test Setup

In order to perform the test and alignment procedures, the Viking Portable radio must be connected to the R8000 Communications System Analyzer as shown in the figure below.

Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform an alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

4.1. Cable Sweep

Every RF cable connected between a radio under test and the analyzer attenuates the signal propagating through it. The amount of attenuation varies by several factors such as operating frequency, cable length, and cable type. Ensuring this attenuation is accounted for by the analyzer is important to the accuracy of several tests and alignments, primarily power tests.

Sweep the RF cable used between the Radio and Analyzer, label the RF cable with the stored cable sweep name, and enable the Cable Sweep feature in the analyzer System, System Settings... menu. Refer to <u>Application Note FCT-1017</u> <u>Utilizing Cable Sweep on</u> <u>the Freedom Communications System Analyzer</u> for instructions on how to perform a cable sweep.

4.2. Battery Eliminator

Battery eliminators interface portable radios to DC power supplies. They're needed because batteries cannot produce consistent voltage/current when the radio is keyed for extended time periods, as it will be during an alignment. Attempting to use even a nominally good battery will eventually result in power alignment failures. A battery eliminator should **always** be used while performing radio alignments and tests with AutoTune to achieve consistent alignment performance.

For Viking Portable models, use the following Kenwood battery eliminator part. For more information, see the applicable Kenwood radio service manual.

Viking Portable battery jig

• Kenwood Part Number: W3F-0001-00

4.3. Viking Portable Test Setup

Refer to the diagram below for the proper test setup.

Note: For reliable radio communication with the analyzer, use an externally powered USB hub from a reputable vendor as shown in the diagram.

Figure 4-1. Viking Portable Test Setup Diagram with Freedom 203012-01 Cable.

Note: When using the Freedom programming cable (which is a modified Kenwood KPG-36X cable), the switch on the cable must be set to "USB" in order for the Analyzer to communicate with the radio.

5. Kenwood Viking Portable Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency. Test Frequencies are band- and mode -specific. A table of the frequencies used by each band may be found in the respective radio service manual.

Note: All analyzer Mode settings are Standard unless otherwise indicated.

5.1. Assist

5.1.1. Alignment

The Assist alignments helps ensure fast VCO lock time. The radio is placed into Test Mode and its VCO lock voltage is adjusted at several Rx and Tx Test Frequency points. The new softpot values for the voltages are then programmed into the radio.

Name	Description
Result	Pass or Fail. Pass as long as no radio error detected.
Frequency	Test Frequency
Old Param	Radio softpot before alignment
New Param	Radio softpot after alignment
Target	Target voltage
Meas	Measured voltage
Diff	Difference between Target and Measured values

Table 5-1. Assist Voltage alignment results

5.1.2. Test

There is no Assist test.

5.2. Ramp Offset

5.2.1. Alignment

The radio is placed into Test Mode and its ramp voltage is optimized. This is an internal radio adjustment which requires no analyzer setup or measurements. The new softpot values for the voltages are then programmed into the radio.

Name	Description
Result	Pass or Fail. Pass as long as no radio error detected.
Meas	Measured value (from radio)
Target	Target value
Up Old	Ramp Up softpot before alignment
Up New	Ramp Up softpot after alignment
Down Old	Ramp Down softpot before alignment
Down New	Ramp Down softpot after alignment

Table 5-2. Ramp Offset alignment results

5.2.2. Test

There is no Ramp Offset test.

5.3. **Rx Filters**

RF Control	Port	Frequency	Modulation	Output Level
Generate	RF IN/OUT	Test Frequency	FM	SINAD:
				-120 dBm Portable /
				-118.5 dBm Mobile
				RSSI:
				-100 dBm

Table 5-3. Analyzer Configuration for Rx Filters

Note: For portables, only the UHF 380 band models support Rx Filters alignment. For mobiles, all models support the Rx Filters alignment except 700/800 MHz band models. If this alignment is selected for a model that does not support the alignment, the test report will indicate the Rx Filters alignment is not applicable.

5.3.1. Alignment

The radio is placed into Test Mode and its Rx filters are adjusted. For mobiles with VHF, VHF Low, or VHF 110 bands, a Sensitivity (RSSI) alignment is performed. For all other models (portable and mobile) a Sensitivity (SINAD) alignment is performed. Using the Output Level indicated in Table 5-3, the softpots are adjusted to obtain 12 dB SINAD, or RSSI value greater than a minimum value. The new softpot values are then programmed into the radio.

Name	Description
Result	Pass or Fail. Pass if no radio error detected.
Frequency	Test Frequency
Old Softpot	Radio softpot before alignment
New Softpot	Radio softpot after alignment
SINAD	SINAD value measured
Target (12 dB)	Difference between Target and measured SINAD values
Table 5.4 Dy Filte	re Sensitivity (SINAD) alignment regulte

Table 5-4. RX Filters Sensitivity (SINAD) alignment results

Description
Pass or Fail. RSSI above Min Limit
Test Frequency
Radio softpot before alignment
Radio softpot after alignment
RSSI value measured
Minimum Limit (inclusive) for RSSI

Table 5-5. Rx Filters Sensitivity (RSSI) alignment results

5.3.2. Test

There is no Rx Filters test.

5.4. TCXO Frequency

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB
Table 5.6. Analyzer Configuration for TCVO Fragmanay				

 Table 5-6. Analyzer Configuration for TCXO Frequency

5.4.1. Alignment

The radio is placed into Test Mode at a Tx Test Frequency. The analyzer is placed into Monitor mode at the radio Tx Test Frequency and nominal attenuation. The radio is set to transmit a signal at the Test Frequency. The analyzer measures the Frequency error of the signal and adjusts the pendulum softpot to obtain the least amount of frequency error. The new softpot value for the pendulum is then programmed into the radio. The frequency error is compared against test limits and the results written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Min Limit	Minimum Limit (inclusive) for Frequency Error
Max Limit	Maximum Limit (inclusive) for Frequency Error
Freq Error	Frequency Error measured
Pendulum Old	Pendulum softpot before alignment
Pendulum New	Pendulum softpot after alignment

 Table 5-7. TCXO Frequency alignment results

5.4.2. Test

The radio is placed into Test Mode at a Tx Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The results are written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Min Limit	Minimum Limit (inclusive) for Frequency Error
Max Limit	Maximum Limit (inclusive) for Frequency Error
Freq Error	Frequency Error measured
Pendulum	Pendulum softpot

Table 5-8. TCXO Frequency test results

5.5. Tx Modulation (Balance)

RF Control	Port	Frequency	Modulation	Attenuation	Averaging
Monitor	RF IN/OUT	Test Frequency	FM	30 dB	+/- Peak / 2
Table F.O. Analysis Oracline day for Table Islations allowers of					

 Table 5-9. Analyzer Configuration for Tx Modulations alignment

5.5.1. Tx Modulation Alignment

The radio is placed into Test Mode at low power at the first TX Test Frequency and commanded to transmit. The radio generates a Mod 2 (TXCO) modulation tone and the ±Peak/2-averaged deviation of this tone is measured with the analyzer. Mod 2 softpot is adjusted until tone deviation is between Mod 2 Min, Max test limits. The radio then generates a Mod 1 (VCO) modulation tone and the ±Peak/2-averaged deviation of this tone is measured with the analyzer. The Mod 1 softpot is adjusted until the tone deviation is between Mod 1 softpot is adjusted until the tone deviation is between Mod 1 Min, Max test limits. Mobile and UHF radios only, the radio is set to generate a fine tune modulation tone using the previously found Mod 2 and Mod 1 softpot. Mod 1 and Mod 2 are adjusted by the same percentage until the tone deviation is between the fine tune modulation Min, Max test limits. This adjustment is performed for each TX Test Frequency. The results for each TX Test Frequency are written to the log file.

Name	Description
Result	Pass or Fail
Frequency	Test Frequency
Dev	Measured deviation
Dev Min	Minimum passable deviation (inclusive)
Dev Max	Minimum passable deviation (inclusive)
Mod 2/Mod 1 Old	Mod 2 or Mod 1 softpot before alignment
Mod 2/Mod 1 New	Mod 2 or Mod 1 softpot after alignment
Table 5 10 Tx Madulati	an alignment results

Table 5-10. Tx Modulation alignment results

Name	Description
Result	Pass or Fail.
Frequency	Test Frequency
Fine Tune Dev	Measured deviation
Fine Tune Dev Min	Minimum passable deviation (inclusive)
Fine Tune Dev Max	Minimum passable deviation (inclusive)
Mod 1 Old	Mod1 softpot before alignment
Mod 1 New	Mod1 softpot after alignment
Mod 2 Old	Mod2 softpot before alignment
Mod 2 New	Mod2 softpot after alignment
T 1 1 C 4 4 T B 1 1 4 4	

Table 5-11. Tx Modulation Fine Tune alignment results

Kenwood Viking Series AutoTune™ User Guide

5.5.2. Tx Modulation Test

There is no Tx Modulation test.

5.6. Tx Power

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB
T E (0 1				

 Table 5-12. Analyzer Configuration for Tx Power

5.6.1. Alignment

The Tx Power Out alignment aligns the power output level of the radio at both High and Low power levels. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency and the Low power setting. For each test frequency, the output level is measured and then adjusted until near to a band-specific output level. This process is repeated for the High power settings. The results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within manufacturer limits
Frequency	Test Frequency
Power	Measured radio output level
Min	Minimum Limit (inclusive) for Power Out
Max	Maximum Limit (inclusive) for Power Out
Old	Original radio softpot setting
New	Radio softpot after alignment

 Table 5-13. Tx Power alignment results

5.6.2. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the first Tx Test Frequency, the output level is measured at each Tx Test Frequency, for Low Power and High Power, and compared against test limits. The results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power	Measured radio output level
Min	Minimum Limit (inclusive) for Power Out
Max	Maximum Limit (inclusive) for Power Out
Softpot	Current radio softpot setting

Table 5-14. Tx Power test results

5.7. Squelch

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	Analog: Wide: 1 kHz @ 3 kHz Narrow: 1 kHz @ 1.5 kHz	Varies

 Table 5-15. Analyzer Configuration for Squelch

5.7.1. Alignment

The analyzer is setup by applying the Modulation signal in Table 5-15 to the radio and then setting radio volume level. The radio is placed into Test Mode at the analog wide channel spacing and Rx Test Frequency. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 10 dB. The radio Unsquelch threshold values are then queried and programmed into radio. The output level of the analyzer is then adjusted until the radio Squelch threshold values are then queried and programmed into radio. The radio programmed into radio. The results are written to the log file. This process is repeated for narrow channel spacing.

Note: For UHF 380 band portables, an EU squelch alignment is performed after the normal squelch alignment. For the EU squelch alignment, the radio is commanded to use European sensitivity voltage parameters and then to start EU squelch tuning.

Name	Description
Result	Pass or Fail. Difference within Max Limit, Min Limit
Frequency	Test Frequency
Squelch Type	One of: Wideband Squelch or Unsquelch, or Narrowband Squelch or
	Unsquelch
Output Level	Analyzer output level used to generate squelch level
SINAD	SINAD level (in dB) when Squelch/Unsquelch occurs
Threshold	Measured radio squelch, unsquelch levels

 Table 5-16. Squelch alignment results

5.7.2. Test

No test is currently available.

5.8. Rx Sensitivity

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	Narrow: 1 kHz @ 1.5 kHz	Model specific
Table 5-17. Analyzer Configuration for Rx Sensitivity test				

5.8.1. Test

The analyzer is setup by applying the Modulation signal in Table 5-17 to the radio and then setting radio volume. The radio is placed into Test Mode at the first Rx Test Frequency. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The results are written to the log file. This process is repeated for each Rx Test Frequency.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
SINAD	SINAD level measured
Output Level	Analyzer output level at which the radio SINAD level measures about
	12 dB
Max Level	Maximum Limit (inclusive) for Rx Sensitivity to Pass

Table 5-18. Rx Sensitivity test results

5.9. P25 Tx Tests

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	C4FM	40 dB
Table 5.40 Analyzar Configuration for D25 Ty Taata				

Table 5-19. Analyzer Configuration for P25 Tx Tests

5.9.1. Test

The radio is set to a digital channel at low power at the first Tx Test Frequency and commanded to transmit a P25 deviation pattern. The modulation fidelity and symbol deviation of this tone is measured with the analyzer. This process is repeated for each Test Frequency. The test results are written to the log file.

Name	Description
Result	Pass or Fail. Pass is modulation fidelity is below Max Limit
Frequency	Test Frequency
Measured	Measured P25 Modulation Fidelity
Max	Maximum passable Modulation Fidelity level (inclusive)
Table 5 20 Ty D25 Medu	lation Eidelity reculto

Table 5-20. Tx P25 Modulation Fidelity results

Name	Description
Result	Pass or Fail. Pass is symbol deviation is between Min and
	Max Limits
Frequency	Test Frequency
Measured	Measured P25 Symbol Deviation
Min	Minimum Symbol Deviation (inclusive)
Max	Maximum Symbol Deviation (inclusive)

Table 5-21. Tx P25 Symbol Deviation results

5.10. Sensitivity (P25 BER)

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	Digital:	-117 dBm
			P25 Phase 1:1011 Hz test pattern	

 Table 5-22. Analyzer Configuration for Sensitivity (P25 BER) test

5.10.1. Test

The analyzer is setup by applying the Modulation signal in Table 5-22 to the radio. The radio is placed into Test Mode at the first Rx Test Frequency. The analyzer retrieves the radio's BER level measured. The BER level is then compared against test limits. The results are written to the log file. This process is repeated for each Rx Test Frequency.

Name	Description
Result	Pass or Fail. Sensitivity (P25 BER) level less than Max Limit
Frequency	Test Frequency
Bit Error	Number of bit errors in two superframes
BER	Radio's BER measurement
Max	Maximum BER level (inclusive) allowed for test to Pass
Table 5 22 Sanaiti	vity (D25 BED) toot reculto

Table 5-23. Sensitivity (P25 BER) test results

6. Kenwood Viking Mobile Radio Test Setup

In order to perform the test and alignment procedures, the Viking Mobile radio must be connected to the R8000 Communications System Analyzer as shown in the figure below.

Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform the indicated alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

6.1. Cable Sweep

Every RF cable connected between a radio under test and the analyzer attenuates the signal propagating through it. The amount of attenuation varies by several factors such as operating frequency, cable length, and cable type. Ensuring this attenuation is accounted for by the analyzer is important to the accuracy of several tests and alignments, primarily power tests.

Sweep the RF cable used between the Radio and Analyzer, label the RF cable with the stored cable sweep name, and enable the Cable Sweep feature in the analyzer System, System Settings... menu. Refer to <u>Application Note FCT-1017</u> <u>Utilizing Cable Sweep on</u> <u>the Freedom Communications System Analyzer</u> for instructions on how to perform a cable sweep.

6.2. Viking Mobile Test Setup

Refer to the diagram below for the proper test setup.

Note: For reliable radio communication with the analyzer, use an externally powered USB hub from a reputable vendor as shown in the diagram.

Figure 6-1. Viking Mobile Test Setup Diagram with 203013-01 Audio Interface Box.

Figure 6-2. Viking Mobile Test Setup Diagram with Freedom 203014-01 Cable.

6.3. Kenwood Viking Mobile USB Cables

For mid-power mobiles, the Freedom Audio Interface Box is used to route the radio 3.5mm speaker output to the analyzer Meter In port. This box allows all alignments and tests to be performed.

For high power mobiles, the Freedom Speaker Cable routes the radio speaker connector output to the analyzer Meter In port. This cable allows all alignments and tests to be performed.

When using a Kenwood USB cable without an Audio Interface Box (mid-power mobiles) or speaker cable (high power mobiles), radio audio signals cannot be routed to the Analyzer for measurement. The USB programming cables do not route radio audio signals. The following tests cannot be run without an Audio Interface Box (mid-power mobiles) or speaker cable (high power mobiles) to connect the Radio directly to the Analyzer:

- Rx Filters
- Squelch
- Rx Sensitivity

Note: When using the KPG-46X cable, the switch on the cable must be set to "USB" in order for the Analyzer to communicate with the radio.

7. Kenwood Viking Mobile Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency that are band- and mode -specific. A table of the frequencies used by each band may be found in the respective radio service manual.

A Tx Max Power alignment is added for the Kenwood Viking Mobile radios. For all other mobile alignments and tests, see section Kenwood Viking Portable Alignment and Test Descriptions for details - the alignments and tests are identical.

For Low Band VHF Mobile radios, the Ramp Offset alignment is moved in the function order to follow the Tx Max Power alignment.

7.1. Tx Max Power

RF Control	Port	Frequency	Modulation	Attenuation		
Monitor	RF IN/OUT	Test Frequency	FM	40 dB		

Table 7-1. Analyzer Configuration for Tx Max Power

7.1.1. Alignment

The Tx Max Power alignment aligns the power output level of the mobile radio at its maximum power level. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency and the Maximum power setting. For each test frequency, the output level is measured and then adjusted until near to a band-specific output level defined by the respective Kenwood Viking Portable radio service manuals.

Model	High Power Limits(W)
Low Band VHF	115 – 135
VHF 110W	123 – 127
700 MHz	43 – 47
800 MHz	38 – 42
All other models	53 – 57

Table 7-2. Kenwood Viking Mobile specified target max power

The results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within manufacturer limits
Frequency	Test Frequency
Power	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 7-3. Tx Max Power alignment results

7.1.2. Test

There is no Tx Max Power test.

8. Basic Troubleshooting

Symptom	Possible Cause	Possible Solution
Analyzer consistently fails to communicate with radio	 Incorrect setting on cable. 	 Verify programming cable KPG-46X is set to USB or Freedom cable 203012-01 is set to USB. See the respective radio test setup sections for more information.
Alignment or test intermittently stops after partial performance.	 USB hub not present. 	 Use an externally powered USB hub to connect radio programming cable to analyzer.
Tx Max Power or Tx Power alignment or test failure	 Cable Sweep not enabled. Power supply voltage level not set to level specified on test setup diagram. Radio duty cycle too high 	 Enable Cable Sweep (Settings System Settings > Cable Sweep Table) and sweep RF cable in use so the analyzer can account for its cable loss. Note Cable Sweep feature is available on analyzer with system software 3.8.0.0 or later. Refer to test setup diagram for proper DC power supply voltage level. Confirm this level with a calibrated multimeter. Wait 1 hour between consecutive full alignment sequences to allow the radio to cool down (while powered on and idling). If the interval is less than an hour between full alignment sequences on the same radio, power alignment failures may occur.

Table 8-1. Kenwood Viking Series Troubleshooting Chart

9. Support Information

9.1. Technical Support

Telephone/Fax: 844.903.7333 Email: service@freedomcte.com Web: <u>http://freedomcte.com/support/</u>

9.2. Sales

Telephone/Fax: 844.903.7333 Email: sales@freedomcte.com Web: <u>http://freedomcte.com/sales/</u>

APPENDIX A. Test Limits

The factory limits contain the default limits as defined by the radio manufacturer and generally should not be modified. AutoTune supports modifying these limits if extenuating circumstances require it. Refer to the R8000 Series Communications System Analyzer Owner's Manual (FCT-1365) for modification instructions.

https://freedomcte.com/library/

For the recommended test limits for each Kenwood Viking Portable or Mobile radio model supported by AutoTune, see the respective Kenwood radio service manual available from your Kenwood dealer.

APPENDIX B. Sample Test Result Report

			Test Result	Repor	'======= 't			==
Date/Ti	me: 6/1/2022	4:22 PM		=====	Opera	tor ID: MM		==
Info								
Analyze	r							
Model # Serial Ref Clo Applica RF Leve RF In/O RF Gen Cable S Selecte 100 MHz 1 GHZ A	 : #: tion: l offset: ut offset: out offset: weep: d File: Attenuation: ttenuation:	R8100 810LSJ0011 Output 4.4 0ff 0.0 dB 0.0 dB 0n RF_ORANGE_N -0.201 dB -0.688 dB	2N					
Radio								
Model # Serial Band: Firmwar Bootloa DSP Ver	: #: der Version: der Version: sion:	VMx830 F0-83-00-00 UHF 380 8.32.10 32.9 5.32.9	-00-00-03-8	4				
Tx Assi	st							
Result Pass Pass Pass Pass Pass Pass Pass Pas	=== Frequency 380.1000 MHz 385.6000 MHz 396.6000 MHz 402.6000 MHz 408.1000 MHz 413.6000 MHz 413.6000 MHz 419.1000 MHz 430.6000 MHz 436.1000 MHz 436.1000 MHz 447.6000 MHz 453.1000 MHz 453.1000 MHz 459.9000 MHz st == Frequency	Old Param 768 874 971 1069 1169 1266 1361 1458 1567 1670 1779 1892 2017 2134 2257 2382 2520 Old Param	New Param 770 874 974 1069 1172 1266 1361 1458 1570 1672 1779 1892 2017 2136 2257 2385 2520 New Param	Targe 128 128 128 128 128 128 128 128 128 128	tt Meas 28 128 128 127 127 127 128 129 129 129 129 128 129 129 129 128 129 129 129 128 129 129 129 128 129 129 129 128 129 129 129 128 129 129 128 129 129 128 129 129 128 129 129 129 128 129 129 128 129 129 128 129 129 128 129 129 128 129 129 128 129 129 128 129 129 128 129 129 128 129 128 129 129 128 129 129 128 129 128 129 129 128 129 129 128 129 129 128 129 129 128 129 129 128 129 129 129 128 129 129 129 128 129 129 129 129 129 129 129 129	Diff 0 -1 -1 -1 0 1 -1 0 1 0 1 -1 1 0 1 1 -1 1 0 1 0		
Pass Pass Pass Pass Pass Pass Pass Pass	380.0500 MHz 385.5500 MHz 396.5500 MHz 402.5500 MHz 408.0500 MHz 413.5500 MHz 413.5500 MHz 419.0500 MHz 430.0500 MHz 436.0500 MHz 441.5500 MHz 441.5500 MHz 453.0500 MHz 453.0500 MHz 464.0500 MHz 469.9500 MHz	790 909 1023 1131 1249 1358 1469 1580 1708 1708 1827 1949 2077 2217 2217 2351 2488 2628 2784	790 909 1023 1134 1249 1358 1469 1580 1708 1827 1952 2077 2220 2351 2351 2488 2628 2784	128 128 128 128 128 128 128 128 128 128	128 129 129 128 127 129 128 129 128 129 128 129 128 129 128 129 129 129 129 129 129	0 1 0 -1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1		
Ramp Of	fset Align =======							
Result	Meas Target	Up Old Up	New Down	01d D 	own New			
Pass	50 50	622 62	342	3	42			
Rx Filt	ers ====	.						
Result	Frequency	Old Softpo	t New Soft	pot S	INAD	Target (1	2 dB)	
Pass Pass Pass Pass Pass	380.0500 MHz 402.5500 MHz 425.0500 MHz 447.5500 MHz 469.9500 MHz	184 160 133 106 73	183 160 134 104 71	9 1 1 1 1	0.4 dB 1.3 dB 1.8 dB 0.6 dB 1.7 dB	Diff: 2.6 Diff: 0.7 Diff: 0.2 Diff: 1.4 Diff: 0.3	2 dB 5 dB 2 dB 2 dB 1 dB	
TCX0 Fr	equency Align	_						
Result	Frequency	Min Limit	Max Limit	Freq	Error	Pendulum O	ld Pendulum	New
Pass	402.5000 MHz	-3 Hz	3 Hz	2 Hz		-3005	-3005	
Tx Modu	lation Align	- Fine Tune	:					
Result	Frequency	Dev	Dev Min De	v Max	Mod1 0	ld Mod1 N	ew Mod2 Old	Mod2 N
Pass Pass	380.00000 мн: 387.50000 мн:	z 3129 Hz z 3158 Hz	3103 Hz 32 3103 Hz 32	03 Hz 03 Hz	2002 2057	2002 2057	-4500 -4492	-4500 -4492

Kenwood Viking Series AutoTune™ User Guide

-4549 -4544 -4434 -4488 -4459 -4465 -4474

Pass Pass Pass Pass Pass Pass Pass Pass	395.00000 MHz 402.50000 MHz 410.00000 MHz 417.50000 MHz 425.00000 MHz 432.50000 MHz 440.00000 MHz 447.50000 MHz 445.50000 MHz 462.50000 MHz 470.00000 MHz	3172 Hz 3156 Hz 3152 Hz 3139 Hz 3135 Hz 3142 Hz 3142 Hz 3145 Hz 3145 Hz 3129 Hz 3149 Hz	3103 HZ 3103 HZ	3203 HZ 3203 HZ	2111 2157 2205 2244 2300 2366 2431 2488 2539 2596 2596 2660	2111 2157 2205 2244 2300 2366 2431 2488 2539 2596 2660	-4549 -4544 -4434 -4488 -4459 -4465 -4474 -4477 -4485 -4482 -4482 -4467
Tx Max P ====================================	ower Align ====================================	Power M	in Limit	Max Limi	t old sof	tnot	New Softnot
Pass	380.0000 MHz	56.6 W 5	3.0 W	57.0 W	190		207
Pass Pass Pass Pass Pass Pass Pass Pass	387.5000 MHz 395.0000 MHz 402.5002 MHz 410.0005 MHz 425.0000 MHz 432.5000 MHz 432.5000 MHz 440.0007 MHz 447.5005 MHz 447.5005 MHz 455.0005 MHz 470.0000 MHz	54.3 W 55 54.7 W 55 55.1 W 55 53.5 W 55 53.5 W 55 53.0 W 55 53.0 W 55 53.0 W 55 53.2 W 55 54.3 W 55 54.8 W 55 54.3 W 55	3.0 W 3.0 W	57.0 W 57.0 W	170 169 158 173 182 161 159 172 171 179 190 177		181 169 183 173 182 161 183 172 192 217 190 177
Tx Power	Align - Low M	Power					
Result	Frequency	Power M	4in Ma	ax 01	d New		
Pass Pass Pass Pass Pass Pass Pass Pass	380.00000 MHz 387.50000 MHz 395.00000 MHz 402.50000 MHz 410.00000 MHz 417.50000 MHz 425.50000 MHz 440.00000 MHz 447.50000 MHz 462.50000 MHz	4.95 W 4 4.86 W 4 4.77 W 4 4.76 W 4 4.73 W 4 4.70 W 4 4.69 W 4 4.52 W 4 4.52 W 4 4.91 W 4	4.50 W 5. 4.50 W 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 3130 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 36 3136 370 3170 77 3173 80 3180		
Tx Power	Align - High	Power					
Result	Frequency	Power	Min	Мах	01d Nev	ı	
Pass Pass Pass Pass Pass Pass Pass Pass	380.00000 MHZ 387.50000 MHZ 395.00000 MHZ 410.00000 MHZ 410.00000 MHZ 425.0000 MHZ 425.0000 MHZ 432.50000 MHZ 440.00000 MHZ 445.0000 MHZ 455.00000 MHZ 462.50000 MHZ	39.92 W 39.57 W 39.52 W 39.59 W 40.17 W 37.89 W 37.87 W 37.18 W 36.72 W 40.82 W 39.61 W 38.91 W	36.00 w 36.00 w	44.00 w 44.00 w	3791 377 3793 379 3804 380 3808 380 3809 380 3815 381 3800 386 38000 386 38000 388 3840 3840 3840 3840	1 199 14 18 199 16 5 5 10 10 10 10 10 10 10	
Squelch					_		
Result	Frequency	Squelch Ty	/pe	Outpu	t Level S	INAD	Threshold
Pass Pass Pass Pass	428.3625 MHz 428.3625 MHz 428.3625 MHz 428.3625 MHz 428.3625 MHz	Wideband S Wideband U Narrowband Narrowband	Squeich Jnsqueich d Squeich d Unsqueic	-119. -119. -119. ch -120.	0 dBm 8 7 dBm 6 0 dBm 9 4 dBm 6	5.8 dB 5.3 dB 5.6 dB 5.2 dB	60137 58953 58905 56354
Rx Sensi	tivity						
Result	Frequency	SINAD 0	Output Lev	/el Max	Level		
Pass Pass Pass	380.0500 MHz 425.0500 MHz 469.9500 MHz	11.9 dB 11.6 dB 11.9 dB	-118.5 dBr -117.8 dBr -119.4 dBr	n -117 n -117 n -117	.0 dBm .0 dBm .0 dBm		
P25 TX T	ests - Modula	tion Fidel	ity ====				
Result	Frequency	Measured	Max				
Pass Pass Pass Pass Pass	380.00000 MHz 402.50000 MHz 425.00000 MHz 447.50000 MHz 470.00000 MHz	0.9 % 1.0 % 1.1 % 1.1 % 1.3 %	5.0 % 5.0 % 5.0 % 5.0 % 5.0 %				
P25 Tx T	ests - Symbol ======	Deviation	=				
Result	Frequency	Measured	Min 	Max 			
Pass Pass	380.00000 MHz 402.50000 MHz	1786 Hz 1798 Hz	1620 Hz 1620 Hz	1980 Hz 1980 Hz			
Pass Pass	425.00000 MHz 447.50000 MHz	1782 Hz 1790 Hz	1620 Hz 1620 Hz	1980 Hz 1980 Hz			
Pass	470.00000 MHz	1787 Hz	1620 Hz	1980 Hz			
Sensitiv	1ty (P25 BER)						
Result	Frequency	Bit Error	BER	Max			
Pass	300.03000 MHz	147	2.34 %	5.00 %			

Pass	402.55000 MHz	230	3.67 %	5.00 %
Pass	419.05000 MHz	301	4.80 %	5.00 %
Pass	441.55000 MHz	217	3.46 %	5.00 %
Pass	469.95000 MHz	140	2.23 %	5.00 %

Tests performed by AutoTune © 2022 Freedom Communication Technologies, Inc. All Rights Reserved.

Figure B-1. Sample Test Result Report

APPENDIX C. Revision History

A – Initial	T.John	M. Mullins	7/14/22	0403
Revision – Change	Requested By	Approved By	Rel. Date	ECO#