

R8000 Series Communications Systems Analyzer

AUTOTUNE USER GUIDE

Motorola APX Series Radios

Astronics Test Systems
12700 Ingenuity Dr
Orlando, FL 32826

Copyright © 2025 Astronics Test Systems
All Rights Reserved
Printed in U.S.A.

FCT-1215 Rev. E

AUTOTUNE™ SOFTWARE LICENSE AGREEMENT

The software license agreement governing use of the R8000 Series Communications Systems Analyzer AutoTune software is located in FCT-1365 R8000 Series Communications Systems Analyzer Operator's Manual.

TRADEMARKS

The Astronics Test Systems logo and Astronics Test Systems are registered ® trademarks of Astronics Test Systems, Inc.

MOTOROLA, MOTO, MOTOROLA SOLUTIONS and the Stylized M logo are trademarks or registered trademarks of Motorola Trademark Holdings, LLC and are used under license. All other trademarks are the property of their respective owners. © 2011–2013 Motorola Solutions, Inc. All rights reserved.

OpenG License

Copyright (c) 2002, Cal-Bay Systems, Inc. <info@calbay.com>
Copyright (c) 2002, Jean-Pierre Drolet <drolet_jp@hotmail.com>
Copyright (c) 2002-2007, Jim Kring <jim@jimkring.com>
Copyright (c) 2002-2005, Rolf Kalbermatter <rolf.kalbermatter@citeng.com>
Copyright (c) 2003-2004, Paul F. Sullivan <Paul@SULLutions.com>
Copyright (c) 2004, Enrique Vargas <vargas@visecurity.com>
Copyright (c) 2004, Heiko Fettig <heiko.fettig@gmx.net>
Copyright (c) 2004, Michael C. Ashe <michael.ashe@imaginatics.com>
Copyright (c) 2005-2006, MKS Instruments, Inc., author: Doug Femec
<doug_femec@mkinst.com>, IM dafemec
Copyright (c) 2006, JKI <info@jameskring.com>
Copyright (c) 2006, JKI <info@jameskring.com>; Authors: Jim Kring
<jim@jimkring.com>, Philippe Guerit <pjm_labview@yahoo.com>
Copyright (c) 2007, JKI <info@jameskring.com> (Author: Jim Kring
<jim.kring@jameskring.com>)
Copyright (c) 2008, Ton Plomp <t.c.plomp@gmail.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the SciWare, James Kring, Inc., nor the names of its

contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

EXPORT CONTROL

ECCN 5E991. EXPORT CONTROL WARNING – Do not disclose or provide this document or item (including its contents) to non-U.S. Citizens or non-U.S. Permanent Residents, or transmit this document or item (including its contents) outside the U.S. without the written permission of Astronics Test Systems and required U.S. Government export approvals.

TABLE OF CONTENTS

1. Introduction	1
2. Scope	1
2.1. Supported Models	1
2.2. Required Options.....	2
3. Motorola APX Portable Radio Test Setup.....	3
3.1. Cable Sweep	3
3.2. Test Hardware	4
3.3. APX Test Setup	6
4. Motorola APX Portable Alignment and Test Descriptions	9
4.1. Tx PA Bias (Auto)	9
4.2. Reference Frequency	10
4.3. TX Power Out	11
4.4. TX Attenuator Limit.....	13
4.5. TX PA Saturation Reference	14
4.6. Tx Deviation Balance.....	15
4.7. Rx Front End Filter	16
4.8. Front End Gain	17
4.9. Rx VLIF DCA Phase Error	18
4.10. Rx Duty Cycle Adjustment	19
4.11. RF Power	20
4.12. Rx Distortion	21
4.13. Rx Analog Sensitivity (SINAD)	22
4.14. Noise Squelch Threshold.....	23
4.15. Modulation Fidelity	24
4.16. Symbol Deviation	25
4.17. P25 Phase II Modulation Fidelity.....	26
4.18. P25 Phase II Symbol Deviation.....	27
4.19. Rx Digital Sensitivity (P25 BER)	28
4.20. Rx Sensitivity (P25 Phase II BER)	29
4.21. Voice Modulation (internal)	30
4.22. Voice Modulation (external)	32
5. Motorola APX Mobile Radio Test Setup	33
5.1. Cable Sweep	33
5.2. Test Hardware	34
5.3. Motorola APX Mobile Test Setup.....	34
5.4. Motorola APX Mobile High Power Test Setup	35
6. Motorola APX Mobile Alignment and Test Descriptions.....	37
6.1. Tx PA Bias.....	38
6.2. Reference Frequency	39
6.3. TX Power Out	41
6.4. TX Current Limit	43
6.5. TX Voltage Limit	44

6.6.	Tx Deviation Balance.....	45
6.7.	Rx Front End Filter	46
6.8.	Rx Duty Cycle Adjustment.....	47
6.9.	RF Power.....	48
6.10.	Rx Distortion	49
6.11.	Rx Analog Sensitivity (SINAD)	50
6.12.	Noise Squelch Threshold	51
6.13.	Modulation Fidelity	52
6.14.	Symbol Deviation	53
6.15.	P25 Phase II Modulation Fidelity.....	54
6.16.	P25 Phase II Symbol Deviation.....	55
6.17.	Rx Digital Sensitivity (P25 BER)	56
6.18.	Rx Sensitivity (P25 Phase II BER)	57
6.19.	Voice Modulation (internal)	58
7.	Basic Troubleshooting	60
8.	Support Information	61
8.1.	Technical Support.....	61
8.2.	Sales Support	61
9.	References	62
APPENDIX A.	Sample Test Result Report	A-1
APPENDIX B.	Revision History	B-1

LIST OF FIGURES

Figure 3-1.	APX Portable Test Setup Diagram	6
Figure 3-2.	APX 8000 Portable Test Setup Diagram	7
Figure 3-3.	APX NEXT Portable Test Setup Diagram.....	7
Figure 3-4.	APX N30 / N50 Portable Test Setup Diagram	8
Figure 3-5.	APX N70 Portable Test Setup Diagram.....	8
Figure 4-1.	Place keyed radio next to analyzer speaker.	30
Figure 4-2.	Adjust analyzer volume until about 60% rated system deviation is measured.....	31
Figure 5-1.	Motorola APX Mobile Test Setup Diagram	35
Figure 5-2.	Motorola APX Mobile 6500 High Power Test Setup Diagram.....	35
Figure 5-3.	Motorola APX Mobile 7500 High Power Test Setup Diagram.....	36
Figure 5-4.	Motorola APX Mobile 8500 High Power Test Setup Diagram	36
Figure 6-1.	AutoTune prompt when test/alignment requires switching bands....	37
Figure 6-2.	Place keyed microphone next to analyzer speaker.	58
Figure 6-3.	Adjust analyzer volume until about 60% rated system deviation is measured.....	59
Figure A-1.	Sample Test Result Report	A-3

LIST OF TABLES

Table 2-1. Required R8x00 options for AutoTune for Motorola APX Series.	2
Table 3-1. Common APX Portable Test Hardware Table	4
Table 4-1. Analyzer Configuration for Tx PA Bias (Auto) alignment.....	9
Table 4-2. Tx PA Bias (Auto) alignment results	9
Table 4-3. Analyzer Configuration for Reference Frequency	10
Table 4-4. Reference Frequency alignment results	10
Table 4-5. Reference Frequency test results	10
Table 4-6. Analyzer Configuration for TX Power Out.....	11
Table 4-7. Power Characterization Points alignment results.....	11
Table 4-8. Tx Power Characterization alignment results.....	12
Table 4-9. Analyzer Configuration for Tx Attenuator Limit	13
Table 4-10. Tx Attenuator Limit alignment results.....	13
Table 4-11. Analyzer Configuration for Tx PA Saturation Reference	14
Table 4-12. Tx PA Saturation Reference alignment results	14
Table 4-13. Analyzer Configuration for Tx Deviation Balance alignment	15
Table 4-14. Tx Deviation Balance alignment results	15
Table 4-15. Analyzer Configuration for Rx Front End Filter alignment.....	16
Table 4-16. Rx Front End Filter alignment results.....	16
Table 4-17. Analyzer Configuration for Front End Gain alignment.....	17
Table 4-18. Front End Gain alignment results	17
Table 4-19. Analyzer Configuration for Rx VLIF DCA Phase Error alignment	18
Table 4-20. Rx VLIF DCA Phase Error alignment results	18
Table 4-21. Analyzer Configuration for Rx Duty Cycle Adjustment alignment	19
Table 4-22. R Duty Cycle Adjustment results	19
Table 4-23. RF Power test results.....	20
Table 4-24. Analyzer Configuration for Rx Distortion Test	21
Table 4-25. Rx Distortion test results	21
Table 4-26. Analyzer Configuration for Rx Analog Sensitivity (SINAD) test.....	22
Table 4-27. Rx Analog Sensitivity (SINAD) test results.....	22
Table 4-28. Analyzer Configuration for Noise Squelch Threshold test.....	23
Table 4-29. Noise Squelch Threshold test results	23
Table 4-30. Analyzer Configuration for Modulation Fidelity test.....	24
Table 4-31. Modulation Fidelity test results.....	24
Table 4-32. Analyzer Configuration for Symbol Deviation test.....	25
Table 4-33. Symbol Deviation test results.....	25
Table 4-34. Analyzer Configuration for P25 Phase 2 Modulation Fidelity test	26
Table 4-35. P25 Phase 2 Modulation Fidelity test results	26
Table 4-36. Analyzer Configuration for P25 Phase 2 Symbol Deviation test	27
Table 4-37. P25 Phase 2 Symbol Deviation test results	27
Table 4-38. Analyzer Configuration for Rx Digital Sensitivity (P25 BER) test	28
Table 4-39. Rx Digital Sensitivity (P25 BER) test results	28
Table 4-40. Analyzer Configuration for Rx Sensitivity (P25 Phase II BER) test	29
Table 4-41. Rx Sensitivity (P25 Phase II BER) test results	29
Table 4-42. Analyzer Configuration for Voice Modulation (internal) test	30

Table 4-43. Voice Modulation (internal) test results	31
Table 4-44. Analyzer Configuration for Voice Modulation (external) test	32
Table 4-45. Voice Modulation (external) test results	32
Table 5-1. Mobile Test Hardware Table	34
Table 6-1. Analyzer Configuration for Tx PA Bias alignment	38
Table 6-2. Tx PA Bias alignment results	38
Table 6-3. Analyzer Configuration for Reference Frequency	39
Table 6-4. Reference Frequency alignment results	39
Table 6-5. Reference Frequency test results	40
Table 6-6. Analyzer Configuration for TX Power Out	41
Table 6-7. Power Detection Calibration alignment results	41
Table 6-8. Tx Power Characterization alignment results	41
Table 6-9. Analyzer Configuration for Tx Current Limit	43
Table 6-10. Tx Current Limit alignment results	43
Table 6-11. Analyzer Configuration for Tx Voltage Limit	44
Table 6-12. Tx Voltage Limit alignment results	44
Table 6-13. Analyzer Configuration for Tx Deviation Balance alignment	45
Table 6-14. Tx Deviation Balance alignment results	45
Table 6-15. Analyzer Configuration for Rx Front End Filter alignment	46
Table 6-16. Rx Front End Filter alignment results	46
Table 6-17. Analyzer Configuration for Rx Duty Cycle Adjustment alignment	47
Table 6-18. R Duty Cycle Adjustment results	47
Table 6-19. RF Power test results	48
Table 6-20. Analyzer Configuration for Rx Distortion Test	49
Table 6-21. Rx Distortion test results	49
Table 6-22. Analyzer Configuration for Rx Analog Sensitivity (SINAD) test	50
Table 6-23. Rx Analog Sensitivity (SINAD) test results	50
Table 6-24. Analyzer Configuration for Noise Squelch Threshold test	51
Table 6-25. Noise Squelch Threshold test results	51
Table 6-26. Analyzer Configuration for Modulation Fidelity test	52
Table 6-27. Modulation Fidelity test results	52
Table 6-28. Analyzer Configuration for Symbol Deviation test	53
Table 6-29. Symbol Deviation test results	53
Table 6-30. Analyzer Configuration for P25 Phase 2 Modulation Fidelity test	54
Table 6-31. P25 Phase 2 Modulation Fidelity test results	54
Table 6-32. Analyzer Configuration for P25 Phase 2 Symbol Deviation test	55
Table 6-33. P25 Phase 2 Symbol Deviation test results	55
Table 6-34. Analyzer Configuration for Rx Digital Sensitivity (P25 BER) test	56
Table 6-35. Rx Digital Sensitivity (P25 BER) test results	56
Table 6-36. Analyzer Configuration for Rx Sensitivity (P25 Phase II BER) test	57
Table 6-37. Rx Sensitivity (P25 Phase II BER) test results	57
Table 6-38. Analyzer Configuration for Voice Modulation (internal) test	58
Table 6-39. Voice Modulation (internal) test results	59
Table 7-1. AutoTune Troubleshooting Chart	60

1. Introduction

The Astronics Test Systems R8000 Series Communications Systems Analyzer AutoTune™ (hereafter “AutoTune”) is designed to provide an automated test and alignment solution for supported two-way radios.

2. Scope

This document is intended to provide information regarding the tests and alignments performed by AutoTune for Motorola APX portable and mobile two-way radios. This document is restricted to radio-specific information.

Please refer to the R8100 Series Communications System Analyzer Owner’s Manual (FCT-1382) for an overview and basic operating instructions for AutoTune itself.

2.1. Supported Models

The following Motorola APX Series radio models are supported:

- APX 900
- APX 1000 / 1000i
- APX 1500 / 1500 Enhanced (‘B’)
- APX 2000
- SRX 2200
- APX 2500
- APX 4000
- APX 4500 / 4500 Enhanced (‘B’)
- APX 6000 / 6000XE / 6000 Enhanced (‘B’)
- APX 6500 / 6500 Enhanced (‘B’) / 6500 High Power
- APX 7000 / 7000XE
- APX 7500 / 7500 High Power
- APX 8000 / 8000H / 8000HXE / 8000XE
- APX 8500 / 8500 High Power
- APX NEXT / NEXT XE / NEXT XN
- APX N30
- APX N50
- APX N70 / N70 XE

2.2. Required Options

Option Name	Reason
P25 Conventional Test Mode (R8-P25)	Used to perform P25 Tx Tests and Sensitivity (P25 BER) tests.
P25 Phase 2 Test Mode (R8-P25_II)	Used to perform P25 Phase II Tx Tests and Sensitivity (P25 Phase II BER) tests
Motorola APX(R8-AT_APX)	Motorola APX AutoTune, including Enhanced ('B') series
Motorola APX8000 (R8-AT_APX8000)	Motorola APX 8x00 AutoTune
Motorola APX NEXT (R8-AT_APXN)	Motorola APX NEXT/Nxx series AutoTune

Table 2-1. Required R8x00 options for AutoTune for Motorola APX Series.

3. Motorola APX Portable Radio Test Setup

Before servicing a radio with AutoTune, ensure the analyzer is running the current system software version. Each system version release contains issue resolutions and/or new/enhanced features.

- On the analyzer, navigate to Settings > About... Note the System version shown.
- Browse to the Astronics Test Systems software upgrades webpage:
<https://freedomcte.com/upgrades/>
- If the first Current System Version shown on the webpage is more recent than the analyzer System version, follow the webpage instructions to download and apply the current system version software to your analyzer.

To perform test and alignment procedures, the APX Portable radio must be connected to the R8000 Communications Systems Analyzer as shown in Figure 3-1. APX Portable Test Setup Diagram.

Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform an alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

3.1. Cable Sweep

Every RF cable connected between a radio under test and the analyzer attenuates the signal propagating through it. The amount of attenuation varies by several factors such as operating frequency, cable length, and cable type. Ensuring this attenuation is accounted for by the analyzer is important to the accuracy of several tests and alignments, primarily power tests.

Sweep the RF cable used between the Radio and Analyzer, label the RF cable with the stored cable sweep name, and enable the Cable Sweep feature in the analyzer System, System Settings... menu. Refer to [Application Note FCT-1017 Utilizing Cable Sweep](#) for instructions on how to perform a cable sweep.

3.2. Test Hardware

3.2.1. Common Test Hardware

Test Aid	Recommended part	Description
Variable DC power supply	Astron VS-50M	DC power supply with sufficient current sourcing capability.
RF test cable	Megaphase RF Orange series	Shielded RF cable with low loss.
Reference cable	Pomona 5697	BNC cable for sweeping RF test cable.
6 dB attenuator	Mini-Circuits 15542	Attenuator for reducing Reference cable VSWR.
Audio cables	Pomona 5697	Connects analyzer and portable test set for audio signals.
Portable test set	Motorola RLN4460_	Routes signals between radio and analyzer for Rx audio and microphone tests.

Table 3-1. Common APX Portable Test Hardware Table

3.2.2. USB Programming & Test Cable

APX (non-Nxx) Series Portables

- Part Number: PMKN4013B+

APX Nxx Series Portables

- Part Number: PMKN4231

3.2.3. Battery Eliminator

A battery eliminator powers a portable radio from a stable DC supply, ensuring consistent voltage and current during extended transmit periods, such as power alignment procedures. Standard batteries, even when fully charged, can drop voltage under load, leading to alignment errors. Using a battery eliminator while servicing with AutoTune ensures reliable, repeatable results.

For APX portable radio models, use the following Motorola battery eliminator parts. For more information, refer to the applicable Motorola basic radio service manual.

APX 900 / 1000 / 2000 / 4000

- Part Number: 66-012031001

APX 5000 / 6000 / 7000 / 8000 / SRX 2200

- Part Number: 66-009254002

APX NEXT

- Part Number: TL000123A01

APX N30 / N50

- Part Number: TL000166A01

APX N70

- Part Number: TL000163A01

3.2.4. RF Antenna Test Adapter

APX (non-Nxx) Series Portables

- Standard SMA

APX N30 / N50

- Part Number: AY000811A01

APX N70

- Part Number: TL000173A01

3.2.5. RF DC Block

This part is required for the following models only.

APX NEXT (XN only) / N30 / N50 / N70

- Part Number: RF Lamda RFDCBLK26SMA

3.2.6. Faraday bag

This part is required for the following models only.

APX N30 / N50 / N70

- Bellamei 17-in. x 15-in. silicone-coated fiberglass

3.3. APX Test Setup

Refer to the diagrams below for the proper test setup.

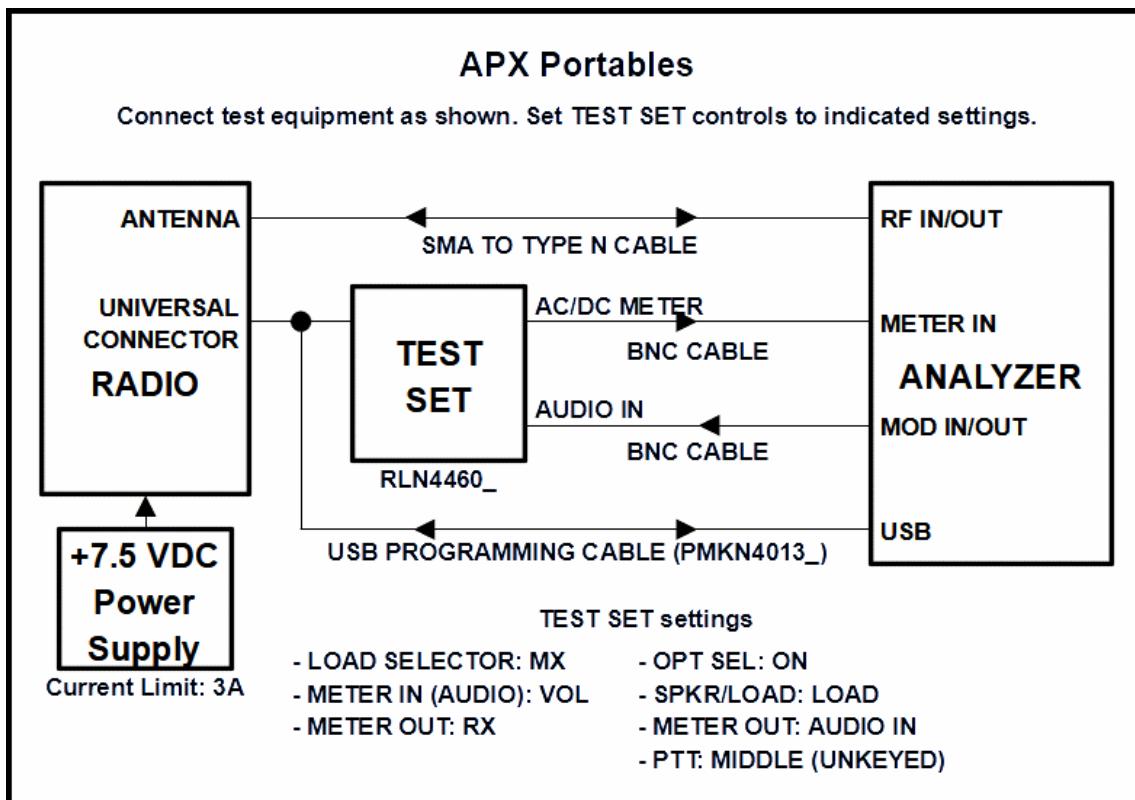


Figure 3-1. APX Portable Test Setup Diagram

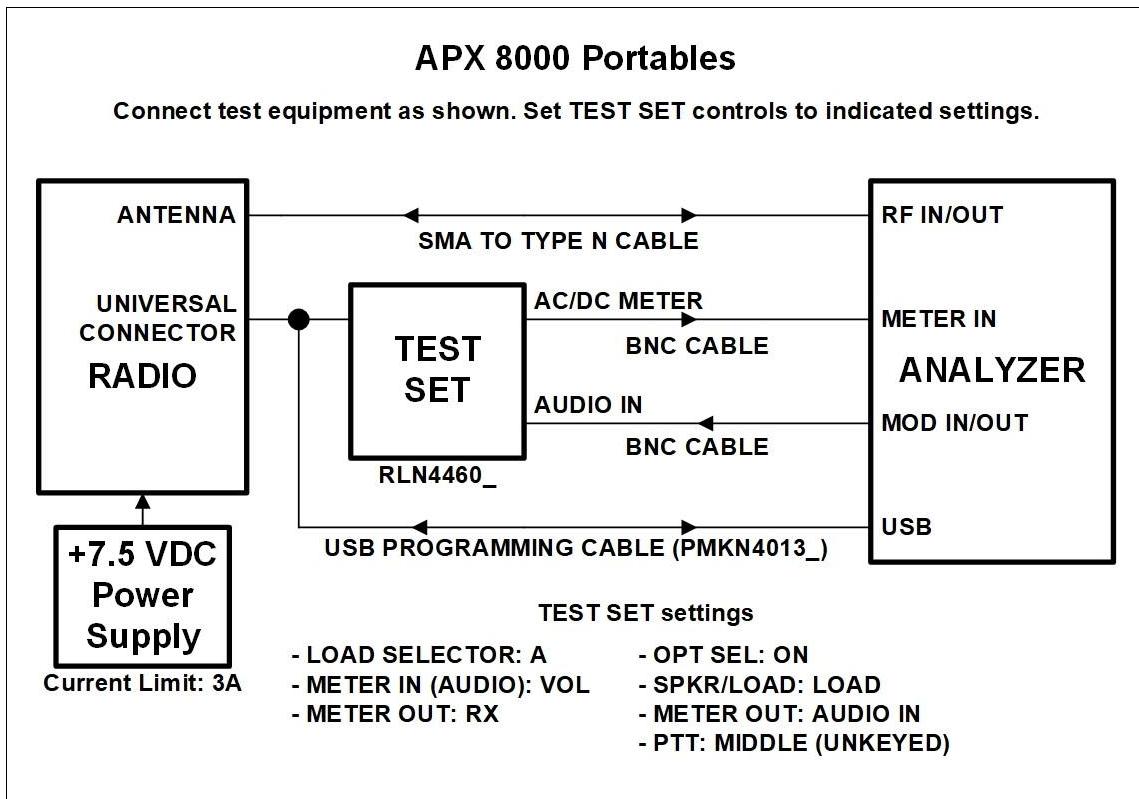


Figure 3-2. APX 8000 Portable Test Setup Diagram

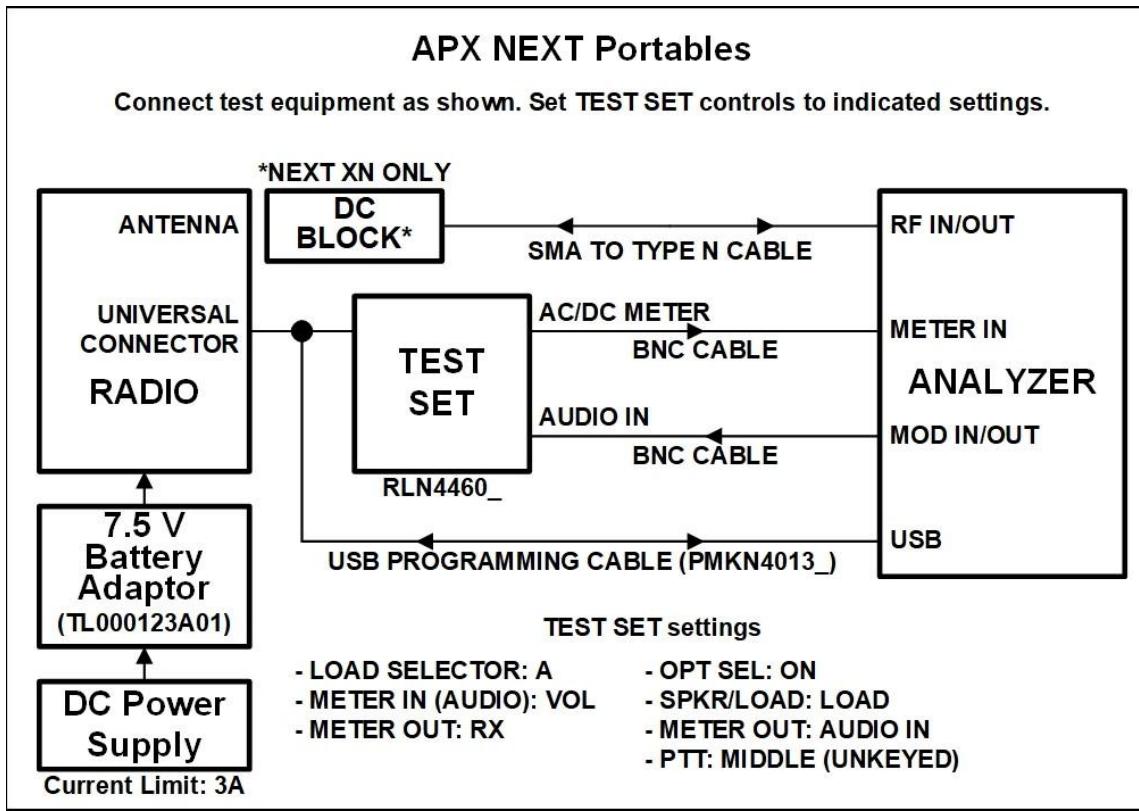


Figure 3-3. APX NEXT Portable Test Setup Diagram

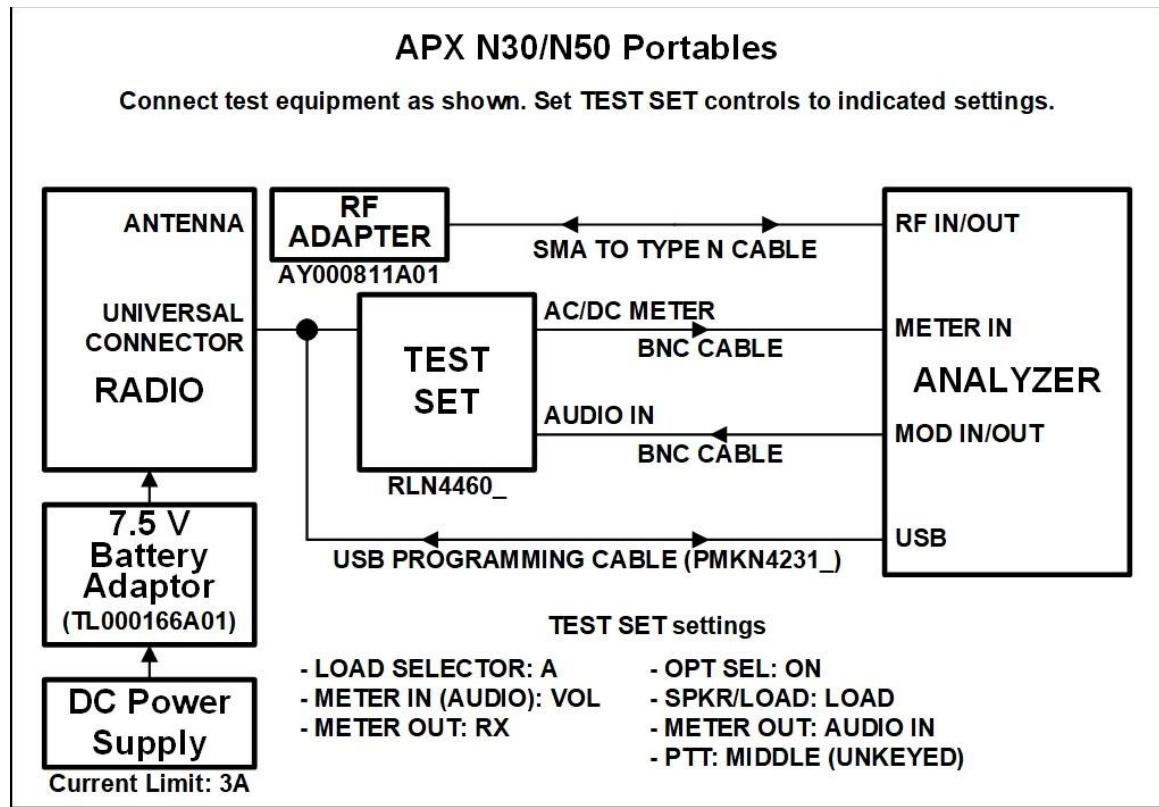


Figure 3-4. APX N30 / N50 Portable Test Setup Diagram

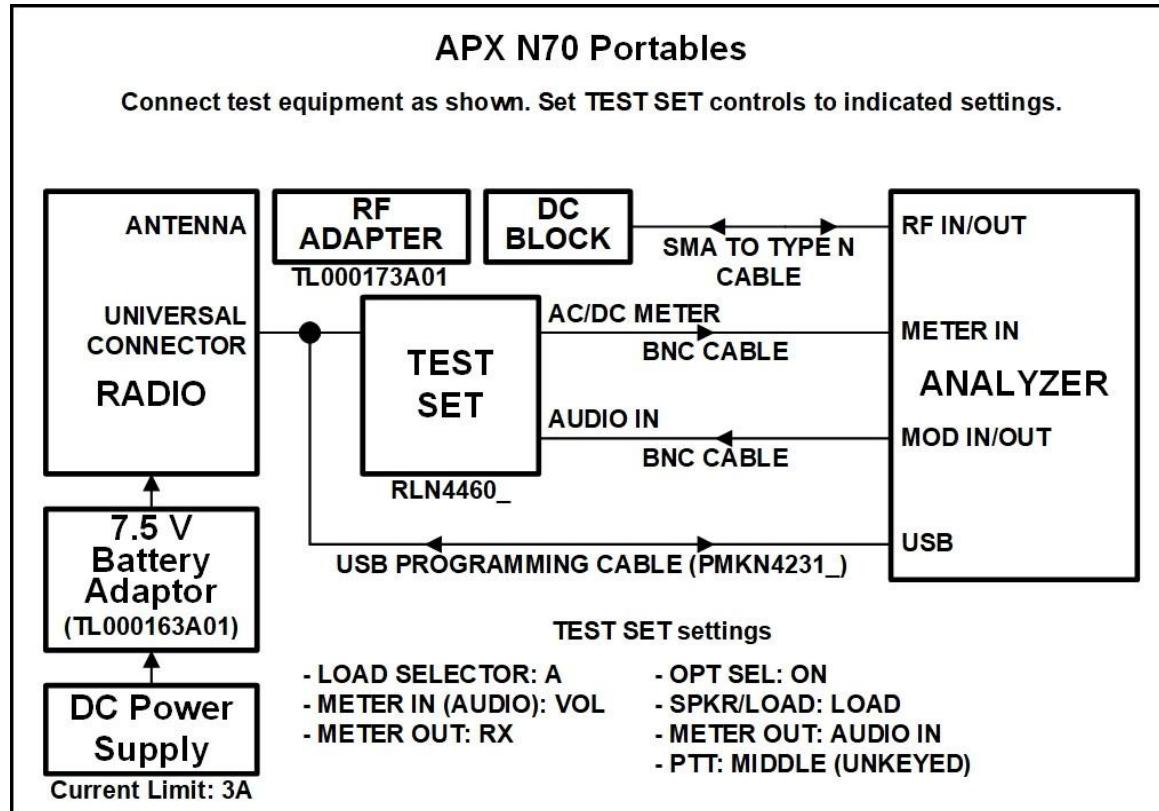


Figure 3-5. APX N70 Portable Test Setup Diagram

4. Motorola APX Portable Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency. Test Frequencies are band- and mode -specific. A table of the frequencies used by each band may be found in the respective radio service manual. See the References section for more details.

Note: All analyzer Test Mode settings are Standard unless otherwise indicated.

4.1. Tx PA Bias (Auto)

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-1. Analyzer Configuration for Tx PA Bias (Auto) alignment

4.1.1. Alignment

Note: This alignment applies only to APX 8000, APX 6000 Enhanced, and APX NEXT portable models.

The Tx PA Bias alignment adjusts the radio power amplifier voltages. The radio is placed into Test Mode. The radio PA bias is enabled and the current bias auto-adjusted. The current bias is disabled. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Pass unless radio error.
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 4-2. Tx PA Bias (Auto) alignment results

4.2. Reference Frequency

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	30 dB

Table 4-3. Analyzer Configuration for Reference Frequency

4.2.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error after alignment
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 4-4. Reference Frequency alignment results

4.2.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Min Limit	Minimum Limit (inclusive) for frequency error
Softpot	Radio softpot which yields Freq Error

Table 4-5. Reference Frequency test results

4.3. TX Power Out

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-6. Analyzer Configuration for TX Power Out

4.3.1. Alignment

The TX Power Out alignment is composed of two parts: Tx Power Characterization Points tuning and Tx Power Characterization tuning.

Power Characterization Points tuning adjusts the characterization points to account for the variability of the power detection circuitry between radios. The radio is placed into Test Mode and commanded to transmit at the first Test Frequency. The output level is measured and then adjusted until near to a band-specific output level defined by the APX Tuner software help file.

This process is repeated for all test frequencies. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Measured Power within manufacturer limits
Frequency	Test Frequency
Power	Measured radio output level
Target Power	Ideal Power
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 4-7. Power Characterization Points alignment results

Power Characterization tuning characterizes the power output level of the radio. The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest TX Test Frequency, the output level is measured at two different points for each TX Test Frequency. These measurements are used to calculate and program power coefficients use to normalize the radio power output level across the radio band as specified by the radio's basic service manual.

This process is repeated for all test frequencies. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Measured Power within manufacturer limits
Frequency	Test Frequency
Low Power	Measured low radio output level
High Power	Measured high radio output level
Diff (>1.5W)	Difference between Low Power and High Power. If outside indicated limit, alignment is marked as Fail.

Table 4-8. Tx Power Characterization alignment results

4.4. TX Attenuator Limit

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-9. Analyzer Configuration for Tx Attenuator Limit

4.4.1. Alignment

Note: The Tx Attenuator Limit alignment applies to APX 8000 models only.

The Tx Attenuator Limit alignment adjusts the attenuator limiting radio PA driver power.

The radio is placed into Test Mode and commanded to transmit at the first Test Frequency. The output level is measured and then adjusted until near to the band-specific output level defined by the APX Family Tuner software.

This process is repeated for all test frequencies. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Measured Power within manufacturer limits
Frequency	Test Frequency
Power	Measured radio output level
Target	Ideal Power
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 4-10. Tx Attenuator Limit alignment results

4.5. TX PA Saturation Reference

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-11. Analyzer Configuration for Tx PA Saturation Reference

4.5.1. Alignment

The Tx PA Saturation Reference alignment adjusts the radio for optimal TDMA F2 performance.

The radio is placed into Test Mode and commanded to transmit at the first Test Frequency. The output level is measured and then adjusted until near to the band-specific output level defined by the APX Family Tuner software help file.

This process is repeated for all test frequencies. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power within Min Limit, Max Limit
Frequency	Test Frequency
Power	Measured radio output level
Min Limit	Minimum inclusive limit for Power to Pass alignment
Max Limit	Maximum inclusive limit for Power to Pass alignment
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 4-12. Tx PA Saturation Reference alignment results

4.6. Tx Deviation Balance

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	20 dB

Table 4-13. Analyzer Configuration for Tx Deviation Balance alignment

4.6.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates an 100 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The radio softpot is adjusted until the deviation difference between the first and second tones is within range. This adjustment is performed for each TX Test Frequency and the percent difference is compared against test limits. The results for each TX Test Frequency are written to the log file.

Name	Description
Result	Pass or Fail. Percent difference between low and high tone deviation less than or equal to Variance.
Frequency	Test Frequency
Low Tone	Deviation measured at 100 Hz tone
High Tone	Deviation measured at 3 kHz tone
Variance	Measured difference between Low and High Tone deviation
Max Limit	Maximum passable percent difference (inclusive) between Low and High Tone deviation
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 4-14. Tx Deviation Balance alignment results

4.7. Rx Front End Filter

RF Control	Port	Frequency	Modulation
Generate	RF IN/OUT, RF GEN OUT	Test Frequency	FM

Table 4-15. Analyzer Configuration for Rx Front End Filter alignment

4.7.1. Alignment

Note: This alignment is only performed for UHF R1 and UHF R2 band models.

The Rx Front End Filter adjusts the radio's RF front end for optimal selectivity and sensitivity.

The radio is placed into Test Mode at the first Rx Test Frequency. Depending on the radio model under test, the analyzer generates a CW signal at -90 dBm or a 1 kHz modulation tone at 60% rated channel deviation at -80 dBm. The radio softpot is then auto-aligned. This adjustment is performed for each Rx Test Frequency. The results for each Rx Test Frequency are written to the test log file.

Name	Description
Result	Pass or Fail. Pass unless radio reports an error.
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 4-16. Rx Front End Filter alignment results

See Rx Analog Sensitivity (SINAD) for alignment verification test.

4.8. Front End Gain

RF Control	Port	Frequency	Modulation
Generate	RF IN/OUT, RF GEN OUT	Test Frequency	FM

Table 4-17. Analyzer Configuration for Front End Gain alignment

4.8.1. Alignment

Note: This alignment is only performed for APX 900 models.

The Rx Front End Gain adjusts the radio's RF front end for RSSI value correction.

The radio is placed into Test Mode at the first Rx Test Frequency. The analyzer generates a CW signal at -75 dBm. The radio softpot is then auto-aligned. This adjustment is performed for each Rx Test Frequency. The results for each Rx Test Frequency are written to the test log file.

Name	Description
Result	Pass or Fail. Pass unless radio reports an error.
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment
FE Gain	Front End Gain, in dB. FE Gain + RSSI is analyzer output level (-75 dBm).
RSSI	RSSI correction value, in dBm. FE Gain + RSSI is analyzer output level (-75 dBm).

Table 4-18. Front End Gain alignment results

4.9. Rx VLIF DCA Phase Error

RF Control	Port	Frequency	Modulation
Generate	RF IN/OUT, RF GEN OUT	Test Frequency	FM

Table 4-19. Analyzer Configuration for Rx VLIF DCA Phase Error alignment

4.9.1. Alignment

Note: This alignment is only performed for APX 900 portable models.

The Rx Front End Filter adjusts the radio's Rx VLIF DCA Phase Error.

The radio is placed into Test Mode at the first Rx Test Frequency. The analyzer generates a CW signal at -15 dBm into the radio. The radio softpot is then auto-aligned. This adjustment is performed for each Rx Test Frequency available. The results for each Rx Test Frequency are written to the test log file.

Name	Description
Result	Pass or Fail. Pass unless radio reports an error.
Frequency	Test Frequency
VLIF Phase Error	VLIF Phase Error parameters

Table 4-20. Rx VLIF DCA Phase Error alignment results

See Rx Analog Sensitivity (SINAD) for alignment verification test.

4.10. Rx Duty Cycle Adjustment

RF Control	Port	Frequency	Modulation
Generate	RF IN/OUT	Test Frequency	FM

Table 4-21. Analyzer Configuration for Rx Duty Cycle Adjustment alignment

4.10.1. Alignment

Note: This alignment is only performed for APX 8000, APX 6000 Enhanced, APX NEXT, and APX 900 portable models.

See Motorola APX Family Tuner Help for a description of this alignment.

The radio is placed into Test Mode at the first Rx Test Frequency. Depending on the radio model under test, the analyzer generates a CW signal at either -30 dBm or at -60 dBm. The radio softpot is then auto-aligned to minimize phase error and improve side band suppression. The results are written to the test log file.

Name	Description
Result	Pass or Fail. Pass unless radio reports an error.
Frequency	Test Frequency
Low/High Amp Err	Low/High side amplitude error (rad)
Low/High Phase Err	Low/High side phase error (rad)
Low/High SBS	Low/High side band suppression factor (APX 900 only)
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 4-22. Rx Duty Cycle Adjustment results

4.11. RF Power

This test verifies that previously aligned radio power meets rated power specifications.

4.11.1. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest Tx Test Frequency, the output level is measured at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 4-23. RF Power test results

4.12. Rx Distortion

This is a test only; there is no alignment.

Note: This test requires the Motorola RLN4460 test set.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 60% rated deviation	-50 dBm

Table 4-24. Analyzer Configuration for Rx Distortion Test

4.12.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Rx Test Frequency. The radio audio output level is tested and if insufficient to measure distortion the volume is increased until sufficient to measure distortion. The audio signal's distortion level is then measured and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Distortion level within Max Limit, Min Limit
Frequency	Test Frequency
Distortion	Measured audio signal distortion level
Max Limit	Maximum Limit (inclusive) for Distortion to Pass

Table 4-25. Rx Distortion test results

4.13. Rx Analog Sensitivity (SINAD)

This is a test only; there is no alignment.

Note: This test requires the Motorola RLN4460 test set.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 60% rated deviation	-50 dBm

Table 4-26. Analyzer Configuration for Rx Analog Sensitivity (SINAD) test

4.13.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure SINAD the volume is increased until sufficient to measure SINAD. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Sensitivity (SINAD) level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures 12 dB
Max Limit	Maximum Limit (inclusive) for Sensitivity (SINAD) to Pass

Table 4-27. Rx Analog Sensitivity (SINAD) test results

4.14. Noise Squelch Threshold

This is a test only; there is no alignment.

Note: This test requires the Motorola RLN4460 test set.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 60% rated deviation	-125 dBm

Table 4-28. Analyzer Configuration for Noise Squelch Threshold test

4.14.1. Test

The purpose of this procedure is to verify that the squelch circuit operation performs as expected, blocking noise but allowing stronger signals to be heard. The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure the unsquelched condition the volume is increased. Beginning at -125 dBm, the analyzer output level is slowly increased until the radio unsquelches OR is 6 dBm above the Max Limit, whichever comes first. The Unsquelch analyzer output level is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Noise Squelch Threshold level within Max Limit
Frequency	Test Frequency
Unsquellch	Analyzer output level at which the radio unsquelches
Max Limit	Maximum Limit (exclusive) for Noise Squelch Threshold to Pass

Table 4-29. Noise Squelch Threshold test results

4.15. Modulation Fidelity

NOTE: This test requires an analyzer with P25 Conventional test mode (R8-P25 option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 1 Modulation Fidelity at a given frequency. Modulation Fidelity (FSK error) represents how accurately a P25 transmitter reproduces an ideal theoretical modulation waveform. The TIA/EIA-102.CAAB measurement standard max limit is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Radio Modulation
Monitor	RF IN/OUT	Test Frequency	Standard Tx (O.153/V.52)

Table 4-30. Analyzer Configuration for Modulation Fidelity test

4.15.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 waveform signal. The analyzer measures the Modulation Fidelity response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Modulation Fidelity error within Max Limit
Frequency	Test Frequency
Mod Fi	Measured FSK error at Frequency
Max Limit	Maximum Limit (inclusive) for Modulation Fidelity to Pass

Table 4-31. Modulation Fidelity test results

4.16. Symbol Deviation

NOTE: This test requires an analyzer with P25 Conventional test mode (R8-P25 option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 1 Symbol Deviation at a given frequency. Symbol Deviation provides the deviation measurement at symbol decision times. The TIA/EIA-102.CAAB measurement standard max limit is 1800 Hz +/-180 Hz. This is a test only; there is no alignment.

RF Control	Port	Frequency	Radio Modulation
Monitor	RF IN/OUT	Test Frequency	Standard Tx (O.153/V.52)

Table 4-32. Analyzer Configuration for Symbol Deviation test

4.16.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 waveform signal. The analyzer measures the Symbol Deviation response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Measured Symbol Deviation is within Max Limit
Frequency	Test Frequency
Symbol Dev	Measured Symbol Deviation at Frequency
Min Limit	Minimum Limit (inclusive) for Symbol Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Symbol Deviation to Pass

Table 4-33. Symbol Deviation test results

4.17. P25 Phase II Modulation Fidelity

NOTE: This test requires an analyzer with P25 Phase 2 Test Mode (R8-P25_II option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 2 Modulation Fidelity at a given frequency. Modulation Fidelity represents how accurately a P25 Phase 2 transmitter reproduces an ideal theoretical modulation waveform. The TIA/EIA-102.CCAB measurement standard max limit is 5%. This is a test only; there is no alignment.

Mode	Port	Frequency	Mon Mod Type	Test Pattern
Monitor	RF IN/OUT	Test Frequency	HCPM	1031 Hz Tone

Table 4-34. Analyzer Configuration for P25 Phase 2 Modulation Fidelity test

4.17.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 Phase 2 waveform signal. The analyzer measures the Modulation Fidelity response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Modulation Fidelity error within Max Limit
Frequency	Test Frequency
Mod Fi	Measured RMS error (%) at Frequency normalized across symbols
Max Limit	Maximum Limit (inclusive) for Modulation Fidelity to Pass

Table 4-35. P25 Phase 2 Modulation Fidelity test results

4.18. P25 Phase II Symbol Deviation

NOTE: This test requires an analyzer with P25 Phase 2 Test Mode (R8-P25_II option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 2 Symbol Deviation at a given frequency. Symbol Deviation is estimated by averaging the normalized frequency deviations (of the FM representation of the phase-based modulation) at symbol times in the received signal and then scaling by the maximum symbol value. The TIA/EIA-102.CCAA HCPM ideal deviation is 2992 Hz. The min and max limits are +/- 5%, or +/-150 Hz. This is a test only; there is no alignment.

Mode	Port	Frequency	Mod	Mod Type	Test Pattern
Monitor	RF IN/OUT	Test Frequency	HCPM		1031 Hz Tone

Table 4-36. Analyzer Configuration for P25 Phase 2 Symbol Deviation test

4.18.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 Phase 2 waveform signal. The analyzer measures the Symbol Deviation response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Measured Symbol Deviation is within Max Limit
Frequency	Test Frequency
Symbol Dev	Measured Symbol Deviation at Frequency
Min Limit	Minimum Limit (inclusive) for Symbol Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Symbol Deviation to Pass

Table 4-37. P25 Phase 2 Symbol Deviation test results

4.19. Rx Digital Sensitivity (P25 BER)

NOTE: This test requires an analyzer with P25 Conventional test mode (R8-P25 option) capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA.CAAA standard BER rate is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Frequency	Framed 1011 Hz Pattern, 2.83 kHz deviation	-116.0 dBm

Table 4-38. Analyzer Configuration for Rx Digital Sensitivity (P25 BER) test

4.19.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency, ready to receive a C4FM-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Bit Error Count	Number of bit errors reported in the measured superframe.
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (BER) to Pass

Table 4-39. Rx Digital Sensitivity (P25 BER) test results

4.20. Rx Sensitivity (P25 Phase II BER)

NOTE: This test requires an analyzer with P25 Phase 2 Test Mode (R8-P25_II option) capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA.CCAA standard BER rate is 5%. This is a test only; there is no alignment.

Mode	Generate
Port	RF IN/OUT
Frequency	Test Frequency
Modulation Type	HDQPSK
Test Pattern	1031 Hz Tone
Level	-116.0 dBm

Table 4-40. Analyzer Configuration for Rx Sensitivity (P25 Phase II BER) test

4.20.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency, ready to receive a C4FM-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Bit Error Count	Number of bit errors reported in the measured superframe
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (BER) to Pass

Table 4-41. Rx Sensitivity (P25 Phase II BER) test results

4.21. Voice Modulation (internal)

The purpose of this procedure is to test the ability of the radio's internal microphone to accurately transfer the received signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-42. Analyzer Configuration for Voice Modulation (internal) test

4.21.1. Test

The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The user is instructed to key the connected radio and place it next to the analyzer speaker (see Figure 4-1). The user is also instructed to adjust the analyzer volume until about 60% rated system deviation is seen on the analyzer display (see Figure 4-2). The deviation level is then measured by the analyzer and the user is instructed when to un-key the radio. The measured deviation is compared against test limits and the final results are written to the log file.

Figure 4-1. Place keyed radio next to analyzer speaker.

Figure 4-2. Adjust analyzer volume until about 60% rated system deviation is measured.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 4-43. Voice Modulation (internal) test results

4.22. Voice Modulation (external)

The purpose of this procedure is to test the ability of an external microphone attached to the radio to effectively transfer the received signal.

Note: This test requires the Motorola RLN4460 test set.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 4-44. Analyzer Configuration for Voice Modulation (external) test

4.22.1. Test

The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The analyzer generates a 1 kHz signal at 800 mV into the radio's external microphone accessory port via the radio test set. The radio is commanded to transmit and the resulting deviation level is then measured by the analyzer. The measured deviation is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 4-45. Voice Modulation (external) test results

5. Motorola APX Mobile Radio Test Setup

Before servicing a radio with AutoTune, ensure the analyzer is running the current system software version. Each system version release contains issue resolutions and/or new/enhanced features.

- On the analyzer, navigate to Settings > About... Note the System version shown.
- Browse to the Astronics Test Systems software upgrades webpage:
<https://freedomcte.com/upgrades/>
- If the first Current System Version shown on the webpage is more recent than the analyzer System version, follow the webpage instructions to download and apply the current system version software to your analyzer.

To perform test and alignment procedures, the APX Mobile radio must be connected to the R8000 Communications Systems Analyzer as shown in the figures in sections 5.3 Motorola APX Mobile Test Setup and 5.4 Motorola APX Mobile High Power Test Setup.

CAUTION: Make certain that the radio under test is configured as described in the corresponding diagram **before** attempting to perform the indicated alignment or test. Failure to do so may result in poor radio performance and/or damage to the analyzer or radio equipment under test.

5.1. Cable Sweep

Every RF cable connected between a radio under test and the analyzer attenuates the signal propagating through it. The amount of attenuation varies by several factors such as operating frequency, cable length, and cable type. Ensuring this attenuation is accounted for by the analyzer is critical to test and alignment accuracy, especially for power alignments and sensitivity tests.

Sweep the RF cable used between the Radio and Analyzer, label the RF cable with the stored cable sweep name, and enable the Cable Sweep feature in the analyzer System, System Settings... menu. Refer to [Application Note FCT-1017 Utilizing Cable Sweep](#) for instructions on how to perform a cable sweep.

5.2. Test Hardware

Test Aid	Recommended part	Description
USB radio programming cable	Motorola HKN6163_ Motorola HKN6184_	USB cable for programming and servicing radio.
Current Meter	Astronics USB-CS	For Tx PA Bias alignment
Variable DC power supply	Astron VS-50_	DC power supply with sufficient current sourcing capability.
RF test cable	Megaphase RF Orange series	Shielded RF cable with low loss.
Reference cable	Pomona 5697	BNC cable for sweeping RF test cable.
6 dB attenuator	Mini-Circuits 15542	Attenuator for reducing Reference cable VSWR.
High power attenuator	150-WA-FFN-06	150W 6dB attenuator for high power mobiles.
Audio cable	Pomona 5697	Connects audio from analyzer to breakout box.
Breakout box	Astronics 202161-01	Routes signals from radio to analyzer for Rx audio tests.
Microphone	Motorola RMN5052_	For Voice Modulation test

Table 5-1. Mobile Test Hardware Table

5.3. Motorola APX Mobile Test Setup

Refer to the diagram below for the proper test setup.

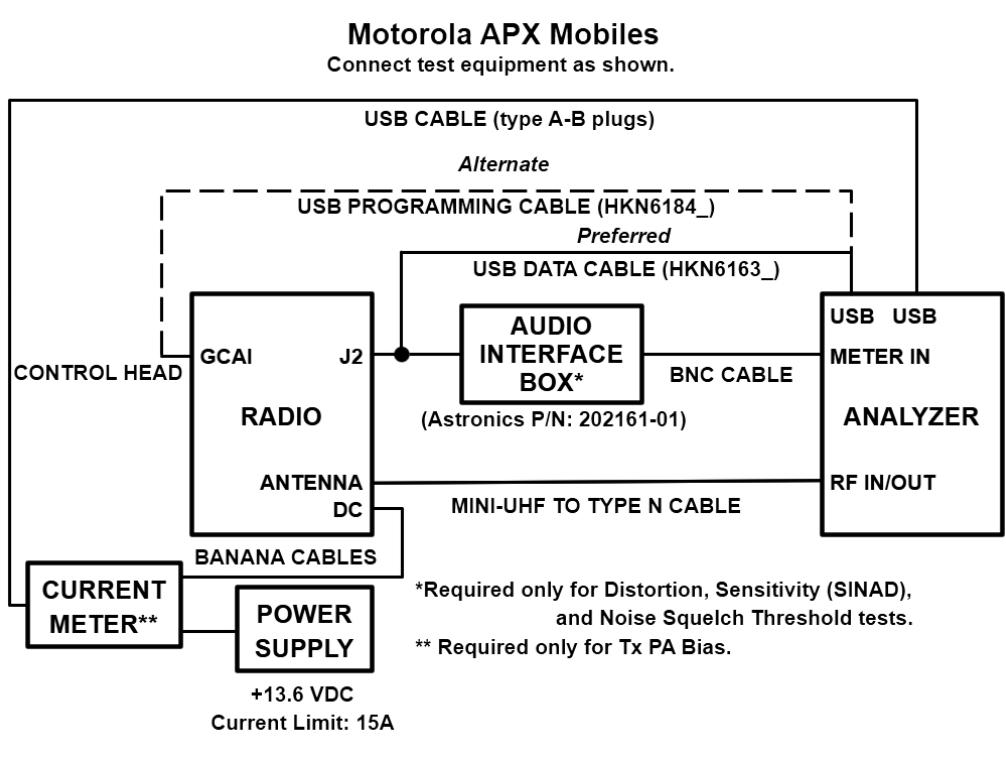


Figure 5-1. Motorola APX Mobile Test Setup Diagram

5.4. Motorola APX Mobile High Power Test Setup

Refer to the diagram below for the proper test setup.

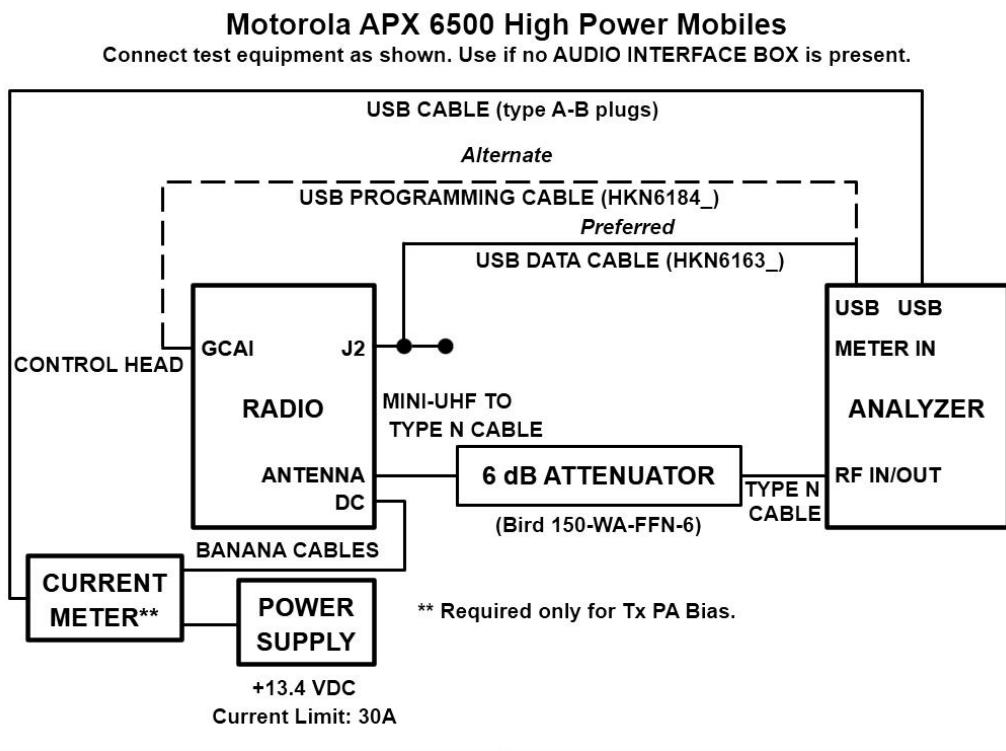


Figure 5-2. Motorola APX Mobile 6500 High Power Test Setup Diagram

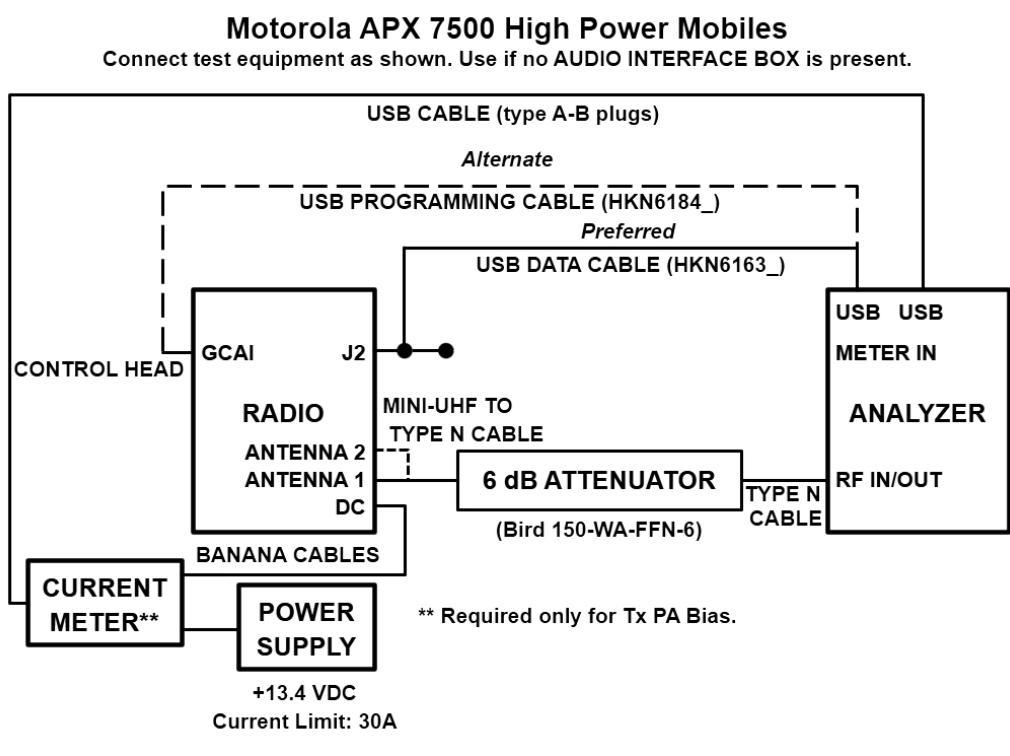


Figure 5-3. Motorola APX Mobile 7500 High Power Test Setup Diagram

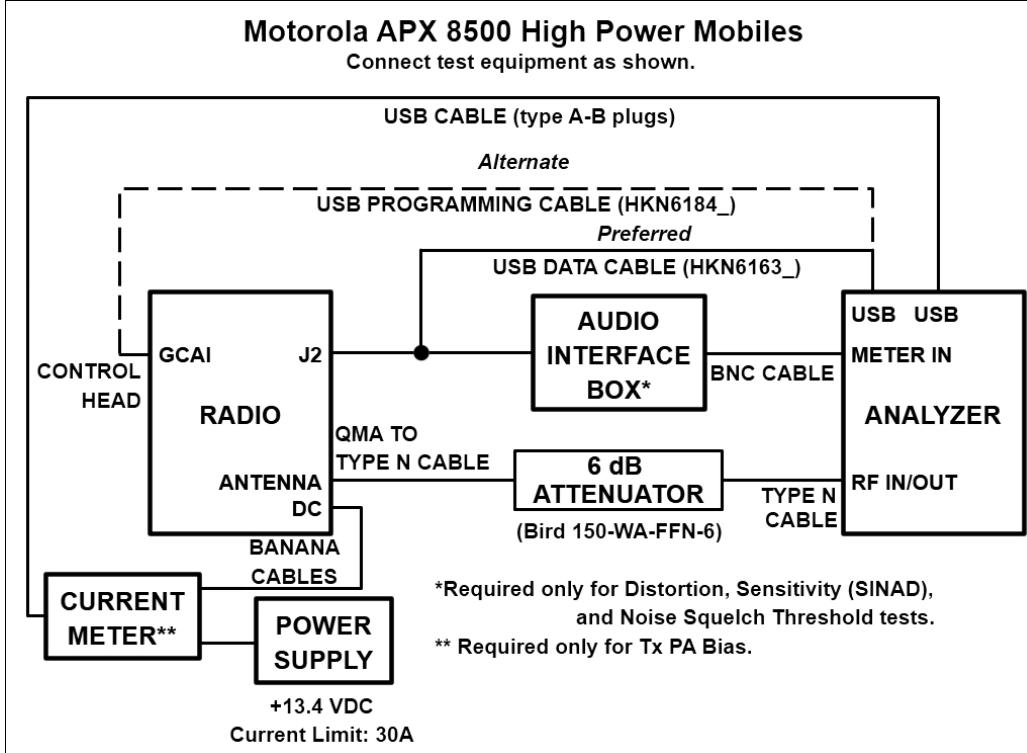


Figure 5-4. Motorola APX Mobile 8500 High Power Test Setup Diagram

6. Motorola APX Mobile Alignment and Test Descriptions

Note: Throughout this section are references to Test Frequency that are band and mode specific. A table of the frequencies used by each band may be found in the respective radio service manual. See the References section for more details.

Note: All analyzer Test Mode settings are Standard unless otherwise indicated.

Dual-Band: Some Motorola APX Mobile radios are dual-band capable. Additional notes for radio models configured with two bands are included in the following sections. If the radio under test is configured with a single band, these notes are not applicable.

Dual-Band: Dual Band equipped radios have two RF connectors at the rear of the radio. They are labeled on the top and on the rear of the radio to identify which band they should be used with. During servicing, it will be necessary to change the test setup cabling to test both bands. The test operator will be prompted to connect the RF cable to the appropriate RF Output port on the radio.

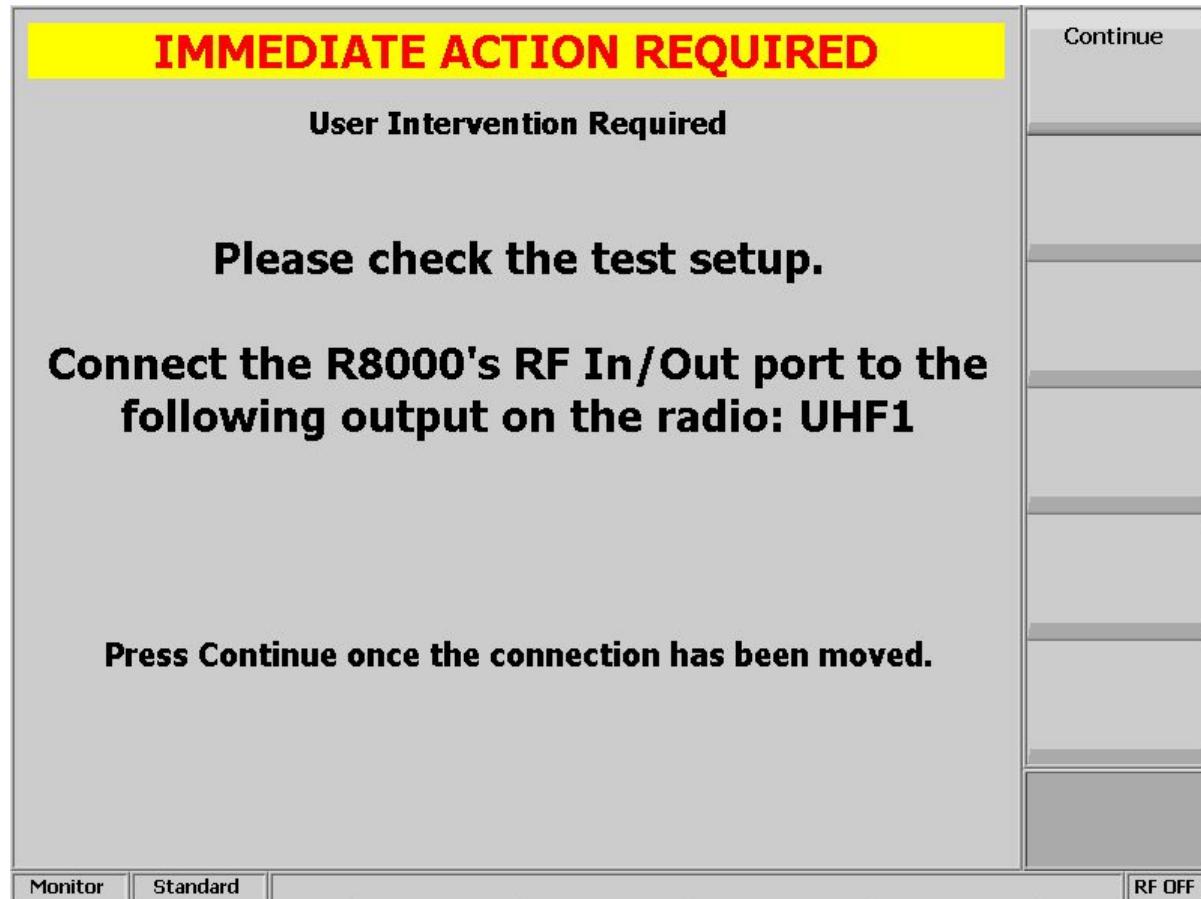


Figure 6-1. AutoTune prompt when test/alignment requires switching bands

6.1. Tx PA Bias

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-1. Analyzer Configuration for Tx PA Bias alignment

6.1.1. Alignment

Note: This alignment requires an external current meter (Astronics part # USB-CS) to perform.

APX 8500 Mobiles: The Tx PA Bias alignment adjusts the radio power amplifier voltages. The radio is placed into Test Mode, radio PA Bias is toggled, and baseline current is measured. If sufficient, the radio PA bias is toggled and the current measured again. The radio softpot is adjusted until the difference between the baseline and measured current is about the same as the values shown in APX Family Tuner. The process is repeated for remaining test frequencies. The final results are written to the log file.

APX Mobiles: The Tx PA Bias alignment adjusts the radio power amplifier voltages. The radio is placed into Test Mode baseline current is measured. If sufficient, the radio PA bias is enabled and the current measured again. The radio softpot is adjusted until the difference between the baseline and measured current is about the same as the values shown in APX Family Tuner. The process is repeated for remaining test frequencies and then the bias is disabled. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power within Min, Max Limits to Pass
PA	Power amplifier number
Frequency	Test Frequency
Baseline	Measured baseline current, in A
Dev Bias	Device bias Target from APX Tuner Help
Measured	Measured current (in A)
Min Limit	Baseline + Dev Bias (inclusive) – 10% for Results to be a Pass
Max Limit	Baseline + Dev Bias (inclusive) + 10% for Results to be a Pass
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-2. Tx PA Bias alignment results

6.2. Reference Frequency

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	20 dB

Table 6-3. Analyzer Configuration for Reference Frequency

6.2.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. Using a best linear fit algorithm, two frequency error measurements are taken at two different radio softpot values. These frequency error measurements are used to calculate the softpot value which minimizes frequency error. After programming this new softpot value into the radio, the radio softpot is fine tuned until minimum frequency error is detected. The frequency error is compared against test limits and the final results written to the log file.

Dual-Band / Multi-band: This alignment is only performed at a single test frequency. The test frequency is the highest test frequency for the highest frequency band selected.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error after alignment
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-4. Reference Frequency alignment results

6.2.2. Test

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The frequency error is measured by the analyzer and compared to test limits. The final results are written to the log file.

Dual-Band / Multi-band: This test is only performed at a single test frequency. The test frequency is the highest test frequency for the highest frequency band.

Name	Description
Result	Pass or Fail. Frequency Error within Max Limit, Min Limit
Frequency	Test Frequency
Freq Error	Measured frequency error
Min Limit	Minimum Limit (inclusive) for frequency error
Max Limit	Maximum Limit (inclusive) for frequency error
Softpot	Radio softpot which yields Freq Error

Table 6-5. Reference Frequency test results

6.3. TX Power Out

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-6. Analyzer Configuration for TX Power Out

6.3.1. Alignment

The TX Power Out alignment is composed of two parts: Power Detection Calibration followed by Tx Power Characterization.

Power Detector Calibration tunes the radio power detector to minimize the power output variation across radios. The radio is placed into Test Mode and commanded to transmit at a mid-band Test Frequency. The output level is measured and then adjusted until near to a band-specific target output level supplied by the radio. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power within Min, Max Limits to Pass
Frequency	Test Frequency
Power	Measured radio output power
Target	Ideal Power
Min Limit	Minimum limit (inclusive) for Power for Results to be a Pass.
Max Limit	Maximum limit (inclusive) for Power for Results to be a Pass.
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-7. Power Detection Calibration alignment results

Tx Power Characterization tuning characterizes the power output level of the radio. The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest TX Test Frequency, the output level is measured at two different points for each TX Test Frequency. These measurements are used to calculate and program power coefficients use to normalize the radio power output level across the radio band as specified by the radio's basic service manual. After the alignment is complete, the power output level is measured again at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Diff (>1.5W) must be more than 1.5W to Pass
Frequency	Test Frequency
Low Power	Measured radio output level at low power
High Power	Measured radio output level at high power
Diff (>1.5W)	Calculated difference between High, Low Power

Table 6-8. Tx Power Characterization alignment results

AutoTune for Motorola APX Series Radios User Guide

6.4. TX Current Limit

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-9. Analyzer Configuration for Tx Current Limit

6.4.1. Alignment

The Tx Current Limit alignment adjusts a current protection circuit.

The radio is placed into Test Mode and commanded to transmit at the first Tx Test Frequency. The radio current protection circuit is auto-adjusted and the radio unkeyed. The process is repeated to all Tx Test Frequencies and the final results are written to the log file.

Name	Description
Result	Pass or Fail
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-10. Tx Current Limit alignment results

6.5. TX Voltage Limit

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-11. Analyzer Configuration for Tx Voltage Limit

6.5.1. Alignment

The Tx Current Limit alignment adjusts a voltage protection circuit.

The radio is placed into Test Mode and commanded to transmit at the first Tx Test Frequency. The radio voltage protection circuit is auto-adjusted and the radio unkeyed. The process is repeated to all Tx Test Frequencies and the final results are written to the log file.

Name	Description
Result	Pass or Fail
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot after alignment

Table 6-12. Tx Voltage Limit alignment results

6.6. Tx Deviation Balance

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	20 dB

Table 6-13. Analyzer Configuration for Tx Deviation Balance alignment

6.6.1. Alignment

The radio is placed into Test Mode at the highest TX Test Frequency and commanded to transmit. The radio generates a 100 Hz modulation tone and the deviation of this tone is measured with the analyzer. The radio then generates a 3 kHz modulation tone and the deviation of this tone is measured with the analyzer. The radio softpot is adjusted until the deviation difference between the first and second tones is within range. This adjustment is performed for each TX Test Frequency and the percent difference is compared against test limits. The results for each TX Test Frequency are written to the log file.

Name	Description
Result	Pass or Fail. Percent difference between low and high tone deviation less than or equal to Variance.
Frequency	Test Frequency
Low Tone	Deviation measured at 100 Hz tone
High Tone	Deviation measured at 3 kHz tone
Variance	Measured difference between Low and High Tone deviation
Max Limit	Maximum passable percent difference (inclusive) between Low and High Tone deviation
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 6-14. Tx Deviation Balance alignment results

6.7. Rx Front End Filter

RF Control	Port	Frequency	Modulation
Generate	RF IN/OUT, RF GEN OUT	Test Frequency	FM

Table 6-15. Analyzer Configuration for Rx Front End Filter alignment

6.7.1. Alignment

Note: This alignment is only performed for UHF R1 and UHF R2 band models.

The Rx Front End Filter adjusts the radio's RF front end for optimal selectivity and sensitivity.

The radio is placed into Test Mode at the first Rx Test Frequency. Depending on the radio model under test, the analyzer generates a CW signal at -90 dBm or a 1 kHz modulation tone at 60% rated channel deviation at -80 dBm. The radio softpot is then auto-aligned. This adjustment is performed for each Rx Test Frequency. The results for each Rx Test Frequency are written to the test log file.

Name	Description
Result	Pass or Fail. Pass unless radio reports an error.
Frequency	Test Frequency
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 6-16. Rx Front End Filter alignment results

6.8. Rx Duty Cycle Adjustment

RF Control	Port	Frequency	Modulation
Generate	RF IN/OUT	Test Frequency	FM

Table 6-17. Analyzer Configuration for Rx Duty Cycle Adjustment alignment

6.8.1. Alignment

Note: This alignment is only performed for APX 8500 and APX Mobile Enhanced models.

See Motorola APX Family Tuner Help for a description of this alignment.

The radio is placed into Test Mode at the first Rx Test Frequency. Depending on the radio model under test, the analyzer generates a CW signal at -60 dBm. The radio softpot is then auto-aligned to minimize phase error. The results are written to the test log file.

Name	Description
Result	Pass or Fail. Pass unless radio reports an error.
Frequency	Test Frequency
Low/High Amp Err	Low/High side amplitude error (rad)
Low/High Phase Err	Low/High side phase error (rad)
Old Softpot	Original radio softpot setting
New Softpot	Radio softpot setting after alignment

Table 6-18. Rx Duty Cycle Adjustment results

6.9. RF Power

This test verifies that previously aligned radio power meets rated power specifications.

6.9.1. Test

The radio is placed into Test Mode and commanded to transmit. Beginning at the lowest Tx Test Frequency, the output level is measured at each TX Test Frequency and compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Power Out within Max Limit, Min Limit
Frequency	Test Frequency
Power Out	Measured radio output level
Min Limit	Minimum Limit (inclusive) for Power Out
Max Limit	Maximum Limit (inclusive) for Power Out

Table 6-19. RF Power test results

6.10. Rx Distortion

This is a test only; there is no alignment.

Note: This test requires the Astronics 202161-01 breakout box.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 60% rated deviation	-50 dBm

Table 6-20. Analyzer Configuration for Rx Distortion Test

6.10.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Rx Test Frequency. The radio audio output level is tested and if insufficient to measure distortion the volume is increased until sufficient to measure distortion. The audio signal's distortion level is then measured and compared to test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. Distortion level within Max Limit, Min Limit
Frequency	Test Frequency
Distortion	Measured audio signal distortion level
Max Limit	Maximum Limit (inclusive) for Distortion to Pass

Table 6-21. Rx Distortion test results

6.11. Rx Analog Sensitivity (SINAD)

This is a test only; there is no alignment.

Note: This test requires the Astronics 202161-01 breakout box.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 60% rated deviation	-50 dBm

Table 6-22. Analyzer Configuration for Rx Analog Sensitivity (SINAD) test

6.11.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure SINAD the volume is increased until sufficient to measure SINAD. The output level of the analyzer is then adjusted until the radio audio signal's SINAD level measures about 12 dB. The current analyzer output level is then compared against test limits. The final results are written to the log file.

Name	Description
Result	Pass or Fail. 12dB SINAD level within Max Limit
Frequency	Test Frequency
12dB SINAD	Analyzer output level at which the radio SINAD level measures 12 dB
Max Limit	Maximum Limit (inclusive) for Rx Analog Sensitivity (SINAD) to Pass

Table 6-23. Rx Analog Sensitivity (SINAD) test results

6.12. Noise Squelch Threshold

This is a test only; there is no alignment.

Note: This test requires the Astronics 202161-01 breakout box.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Freq	FM, 60% rated deviation	-125 dBm

Table 6-24. Analyzer Configuration for Noise Squelch Threshold test

6.12.1. Test

The purpose of this procedure is to verify that the squelch circuit operation performs as expected, blocking noise but allowing stronger signals to be heard. The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency. The radio audio output level is tested and if insufficient to measure the unsquelched condition the volume is increased. Beginning at -125 dBm, the analyzer output level is slowly increased until the radio unsquelches OR is 6 dBm above the Max Limit, whichever comes first. The Unsquelch analyzer output level is compared against test limits and the final results written to the log file.

Name	Description
Result	Pass or Fail. Noise Squelch Threshold level within Max Limit
Frequency	Test Frequency
Unsquellch	Analyzer output level at which the radio unsquelches
Max Limit	Maximum Limit (exclusive) for Noise Squelch Threshold to Pass

Table 6-25. Noise Squelch Threshold test results

6.13. Modulation Fidelity

NOTE: This test requires an analyzer with P25 Conventional test mode (R8-P25 option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 1 Modulation Fidelity at a given frequency. Modulation Fidelity (FSK error) represents how accurately a P25 transmitter reproduces an ideal theoretical modulation waveform. The TIA/EIA-102.CAAB measurement standard max limit is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Radio Modulation
Monitor	RF IN/OUT	Test Frequency	Standard Tx (O.153/V.52)

Table 6-26. Analyzer Configuration for Modulation Fidelity test

6.13.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 waveform signal. The analyzer measures the Modulation Fidelity response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Modulation Fidelity error within Max Limit
Frequency	Test Frequency
Mod Fi	Measured FSK error at Frequency
Max Limit	Maximum Limit (inclusive) for Modulation Fidelity to Pass

Table 6-27. Modulation Fidelity test results

6.14. Symbol Deviation

NOTE: This test requires an analyzer with P25 Conventional test mode (R8-P25 option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 1 Symbol Deviation at a given frequency. Symbol Deviation provides the deviation measurement at symbol decision times. The TIA/EIA-102.CAAB measurement standard max limit is 1800 Hz +/-180 Hz. This is a test only; there is no alignment.

RF Control	Port	Frequency	Radio Modulation
Monitor	RF IN/OUT	Test Frequency	Standard Tx (O.153/V.52)

Table 6-28. Analyzer Configuration for Symbol Deviation test

6.14.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 waveform signal. The analyzer measures the Symbol Deviation response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Measured Symbol Deviation is within Max Limit
Frequency	Test Frequency
Symbol Dev	Measured Symbol Deviation at Frequency
Min Limit	Minimum Limit (inclusive) for Symbol Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Symbol Deviation to Pass

Table 6-29. Symbol Deviation test results

6.15. P25 Phase II Modulation Fidelity

NOTE: This test requires an analyzer with P25 Phase 2 Test Mode (R8-P25_II option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 2 Modulation Fidelity at a given frequency. Modulation Fidelity represents how accurately a P25 Phase 2 transmitter reproduces an ideal theoretical modulation waveform. The TIA/EIA-102.CCAB measurement standard max limit is 5%. This is a test only; there is no alignment.

Mode	Port	Frequency	Mon Mod Type	Test Pattern
Monitor	RF IN/OUT	Test Frequency	HCPM	1031 Hz Tone

Table 6-30. Analyzer Configuration for P25 Phase 2 Modulation Fidelity test

6.15.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 Phase 2 waveform signal. The analyzer measures the Modulation Fidelity response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Modulation Fidelity error within Max Limit
Frequency	Test Frequency
Mod Fi	Measured RMS error (%) at Frequency normalized across symbols
Max Limit	Maximum Limit (inclusive) for Modulation Fidelity to Pass

Table 6-31. P25 Phase 2 Modulation Fidelity test results

6.16. P25 Phase II Symbol Deviation

NOTE: This test requires an analyzer with P25 Phase 2 Test Mode (R8-P25_II option) capability.

The purpose of this procedure is to measure the radio transmitter's P25 Phase 2 Symbol Deviation at a given frequency. Symbol Deviation is estimated by averaging the normalized frequency deviations (of the FM representation of the phase-based modulation) at symbol times in the received signal and then scaling by the maximum symbol value. The TIA/EIA-102.CCAA HCPM ideal deviation is 2992 Hz. The min and max limits are +/- 5%, or +/-150 Hz. This is a test only; there is no alignment.

Mode	Port	Frequency	Mod	Mod Type	Test Pattern
Monitor	RF IN/OUT	Test Frequency	HCPM		1031 Hz Tone

Table 6-32. Analyzer Configuration for P25 Phase 2 Symbol Deviation test

6.16.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest Tx Test Frequency and configured to generate the indicated P25 Phase 2 waveform signal. The analyzer measures the Symbol Deviation response which is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Measured Symbol Deviation is within Max Limit
Frequency	Test Frequency
Symbol Dev	Measured Symbol Deviation at Frequency
Min Limit	Minimum Limit (inclusive) for Symbol Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Symbol Deviation to Pass

Table 6-33. P25 Phase 2 Symbol Deviation test results

6.17. Rx Digital Sensitivity (P25 BER)

NOTE: This test requires an analyzer with P25 Conventional test mode (R8-P25 option) capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA.CAAA standard BER rate is 5%. This is a test only; there is no alignment.

RF Control	Port	Frequency	Modulation	Level
Generate	RF IN/OUT	Test Frequency	Framed 1011 Hz Pattern, 2.83 kHz deviation	-116.0 dBm

Table 6-34. Analyzer Configuration for Rx Digital Sensitivity (P25 BER) test

6.17.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency, ready to receive a C4FM-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Bit Error Count	Number of bit errors reported in the measured superframe.
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (BER) to Pass

Table 6-35. Rx Digital Sensitivity (P25 BER) test results

6.18. Rx Sensitivity (P25 Phase II BER)

NOTE: This test requires an analyzer with P25 Phase 2 Test Mode (R8-P25_II option) capability.

The purpose of this procedure is to measure the radio receiver's Bit Error Rate at a given frequency. The TIA/EIA.CCAA standard BER rate is 5%. This is a test only; there is no alignment.

Mode	Generate
Port	RF IN/OUT
Frequency	Test Frequency
Modulation Type	HDQPSK
Test Pattern	1031 Hz Tone
Level	-116.0 dBm

Table 6-36. Analyzer Configuration for Rx Sensitivity (P25 Phase II BER) test

6.18.1. Test

The analyzer is setup as specified in this section's Analyzer Configuration table. The radio is placed into Test Mode at the lowest RX Test Frequency, ready to receive a C4FM-modulated signal from the analyzer. Once BER synchronization is detected, the analyzer output level is decreased until a BER of 5% is measured. The analyzer output level at 5% BER is compared against test limits and the final results are written to the log file.

Name	Description
Result	Pass or Fail. Digital Sensitivity (BER) output level within Max Limit
Frequency	Test Frequency
Bit Error Count	Number of bit errors reported in the measured superframe
5% BER	Analyzer output level at which the radio BER measures 5%
Max Limit	Maximum Limit (inclusive) for Digital Sensitivity (BER) to Pass

Table 6-37. Rx Sensitivity (P25 Phase II BER) test results

6.19. Voice Modulation (internal)

Note: The following Motorola APX Mobile models and configurations are not supported for this test:

- APX 6500 High Power
- APX 7500 High Power
- APX 8500 High Power
- APX mobile with remote control head
- APX mobile with E5 front control head

The purpose of this procedure is to test the ability of the radio's external microphone audio circuit to accurately transfer the received microphone signal.

RF Control	Port	Frequency	Modulation	Attenuation
Monitor	RF IN/OUT	Test Frequency	FM	40 dB

Table 6-38. Analyzer Configuration for Voice Modulation (internal) test

6.19.1. Test

The radio is placed into Test Mode at the lowest TX Test Frequency. The analyzer is setup as specified in this section's Analyzer Configuration table. The user is instructed to key the connected radio microphone and place the microphone next to the analyzer speaker (see Figure 6-2). The user is also instructed to adjust the analyzer volume until about 60% rated system deviation is seen on the analyzer display (see Figure 6-3). The deviation level is then measured by the analyzer and the user is instructed when to unkey the microphone. The measured deviation is compared against test limits and the final results are written to the log file.

Figure 6-2. Place keyed microphone next to analyzer speaker.

Figure 6-3. Adjust analyzer volume until about 60% rated system deviation is measured.

Dual-Band: This test is only performed for the lowest RX Test Frequency in the lowest frequency band.

Name	Description
Result	Pass or Fail. Deviation within Min Limit, Max Limit
Frequency	Test Frequency
Deviation	Measured modulation deviation level
Min Limit	Minimum Limit (inclusive) for Deviation to Pass
Max Limit	Maximum Limit (inclusive) for Deviation to Pass

Table 6-39. Voice Modulation (internal) test results

7. Basic Troubleshooting

Symptom	Possible Cause(s)	Possible Solution(s)
Radio repeatedly fails communication initialization.	Serial link corruption.	Retry communicating with the radio after each of the following steps: <ul style="list-style-type: none"> • Power cycle the radio. • Restart the analyzer.
	Radio powered off	Power on radio
	Programming cable unconnected	Connect programming cable
Mobile radio won't power up.	Loose HKN6163_cable connection.	Verify cable connection is OK.
	Motorola CPS Ignition Switch setting.	Use Motorola CPS software to set Radio Wide, Advanced, Ignition Switch setting to "Blank". This setting lets radio power up for testing without an ignition signal present. Be sure to return this setting to its original value when testing completed.
Portable radio consistently fails TX Power Out test and/or alignment.	DC Power supply current limiting preventing portable radio from getting adequate current.	Adjust DC power supply current limit to at least 3 Amps.
	Battery eliminator not used.	Replace normal radio battery with battery eliminator connected to configured DC power supply.

Table 7-1. AutoTune Troubleshooting Chart

8. Support Information

8.1. Technical Support

Document Library: freedomcte.com/library/
Video Library: freedomcte.com/videos/
Phone: 903.985.8999
Email: Freedom.TechnicalSupport@astronics.com

8.2. Sales Support

Phone: 903.985.8999
Email: LMRSales@astronics.com

9. References

R8000 Series Communications System Analyzer Operator's Manual (FCT-1365_)

R8200 Communications System Analyzer User's Guide (FCT-1380_)

APX 6500, APX7500, 03, 05 & 09 Basic Service Manual (6875964M01)

APPENDIX A. Sample Test Result Report

```
=====
Test Result Report
=====
Date/Time: 5/15/2023 11:53 AM          Operator ID: A. Technician

Info
-----
Analyzer
-----
Model #: R8100
Serial #: 800LSJ0011
Ref Clock Mode: Output
Application: 4.4.0.130
RF Level Offset: Off
RF In/Out Offset: 0.0 dB
RF Gen Out Offset: 0.0 dB
Cable Sweep: On
Selected File: RF_ORANGE_N2N_2
100 MHz Attenuation: -0.201 dB
1 GHz Attenuation: -0.742 dB

Radio
-----
Model #: M25URS9PW1BN
Serial #: 527CXF0779
IP Address: 192.168.128.1
Band(s): 700-800MHz
Host SW: R30.01.00
DSP SW: R30.01.00
UCM SW: R011302
Encrypt Algorithm(s): None
-----

Tx PA Bias Align
=====
Result PA Frequency     Bias     Min Limit   Max Limit   Error   Old Softpot   New Softpot
---  ---  ---  ---  ---  ---  ---  ---  ---  ---
Pass 1 869.8875 MHz 265 mA 225 mA 275 mA 6 % 158 158
Pass 2 869.8875 MHz 246 mA 225 mA 275 mA -2 % 156 156
Pass 3 869.8875 MHz 98 mA 90 mA 110 mA -2 % 119 119
-----

Reference Oscillator Align
=====
Result Frequency     Freq Error   Min Limit   Max Limit   Old Softpot   New Softpot
---  ---  ---  ---  ---  ---  ---  ---  ---
Pass 869.8875 MHz -1 Hz -50 Hz 50 Hz 2800 3134
-----

Power Detection Calibration Align
=====
Result Frequency     Power     Target   Min Limit   Max Limit   Old Softpot   New Softpot
---  ---  ---  ---  ---  ---  ---  ---  ---
Pass 806.0125 MHz 16.9 w 16.5 w 16.0 w 17.0 w 100 88
-----

Tx Power Characterization Align
=====
Result Frequency     Low Power   High Power   Diff (>1.5w)
---  ---  ---  ---  ---  ---  ---  ---
Pass 762.0125 MHz 2.98 w 33.30 w 30.32 w
Pass 768.9875 MHz 3.14 w 34.70 w 31.56 w
Pass 776.0125 MHz 3.25 w 36.26 w 33.01 w
Pass 793.9875 MHz 3.43 w 37.22 w 33.79 w
Pass 805.9125 MHz 3.08 w 32.83 w 29.75 w
Pass 806.0125 MHz 3.06 w 38.05 w 34.99 w
Pass 823.9875 MHz 2.61 w 33.48 w 30.87 w
Pass 851.0125 MHz 2.53 w 33.46 w 30.93 w
Pass 860.0125 MHz 2.49 w 32.44 w 29.95 w
Pass 869.8875 MHz 2.42 w 32.29 w 29.87 w
-----

Tx Current Limit Align
=====
Result Frequency     Old Softpot   New Softpot
---  ---  ---  ---
Pass 762.0125 MHz 67 68
Pass 768.9875 MHz 66 66
Pass 776.0125 MHz 64 65
Pass 793.9875 MHz 62 63
Pass 805.9125 MHz 60 61
Pass 806.0125 MHz 68 70
Pass 823.9875 MHz 73 78
Pass 851.0125 MHz 76 78
Pass 860.0125 MHz 76 77
Pass 869.8875 MHz 74 76
-----

Tx Voltage Limit Align
=====
Result Frequency     Old Softpot   New Softpot
---  ---  ---  ---
Pass 762.0125 MHz 179 180
Pass 768.9875 MHz 176 177
Pass 776.0125 MHz 173 175
Pass 793.9875 MHz 155 158
Pass 805.9125 MHz 156 161
Pass 806.0125 MHz 168 178
Pass 823.9875 MHz 193 217
Pass 851.0125 MHz 194 198
Pass 860.0125 MHz 194 198
Pass 869.8875 MHz 193 198
-----

Tx Deviation Balance Align
=====
Result Frequency     Low Tone   High Tone   Variance  Max Limit   Old softpot   New Softpot
---  ---  ---  ---  ---  ---  ---  ---
Pass 870.0000 MHz 3.029 kHz 3.028 kHz -0.0 % +/-0.2 % 610 556
-----
```

AutoTune for Motorola APX Series Radios User Guide

Pass	860.0000 MHz	3.017 kHz	3.019 kHz	0.1 %	+/-0.2 %	605	549
Pass	851.0000 MHz	3.022 kHz	3.021 kHz	-0.0 %	+/-0.2 %	605	547
Pass	825.0000 MHz	3.027 kHz	3.026 kHz	-0.0 %	+/-0.2 %	585	530
Pass	818.0000 MHz	3.019 kHz	3.017 kHz	-0.1 %	+/-0.2 %	575	520
Pass	806.0000 MHz	3.026 kHz	3.025 kHz	-0.1 %	+/-0.2 %	440	498
Pass	798.0000 MHz	3.021 kHz	3.022 kHz	0.0 %	+/-0.2 %	420	480
Pass	794.0000 MHz	3.023 kHz	3.022 kHz	-0.0 %	+/-0.2 %	410	467
Pass	792.0000 MHz	3.026 kHz	3.024 kHz	-0.1 %	+/-0.2 %	410	462
Pass	777.0000 MHz	3.023 kHz	3.022 kHz	-0.1 %	+/-0.2 %	620	696
Pass	768.0000 MHz	3.012 kHz	3.011 kHz	-0.0 %	+/-0.2 %	800	719
Pass	762.0000 MHz	3.013 kHz	3.013 kHz	0.0 %	+/-0.2 %	805	731

Rx Front End Filter Align 700-800MHz - Not Applicable

Pass

Rx Duty Cycle Adjustment Align

Result	Frequency	Low/High	Amp Err	Low/High	Phase Err	old Softpot	New Softpot
Pass	869.9375 MHz	1.000244/1.000458	-0.001343/-0.001953	1086/1086	1086/1086		

RF Power Test

Result	Frequency	Power	Min Limit	Max Limit
Pass	762.0125 MHz	33.3 W	30.0 W	36.0 W
Pass	768.9875 MHz	33.3 W	30.0 W	36.0 W
Pass	776.0125 MHz	33.1 W	30.0 W	36.0 W
Pass	793.9875 MHz	32.9 W	30.0 W	36.0 W
Pass	805.9125 MHz	32.3 W	30.0 W	36.0 W
Pass	806.0125 MHz	37.1 W	35.0 W	42.0 W
Pass	823.9875 MHz	36.3 W	35.0 W	42.0 W
Pass	851.0125 MHz	37.2 W	35.0 W	42.0 W
Pass	860.0125 MHz	37.6 W	35.0 W	42.0 W
Pass	869.8875 MHz	37.7 W	35.0 W	42.0 W

Rx Distortion Test

Result	Frequency	Distortion	Max Limit
Pass	762.0625 MHz	1.5 %	3.0 %

Rx Analog Sensitivity (SINAD) Test

Result	Frequency	12dB SINAD	Max Limit
Pass	762.0625 MHz	-121.7 dBm	-119.0 dBm

Noise Squelch Threshold Test

Result	Frequency	Unsquelch	Max Limit
Pass	762.0625 MHz	-121.5 dBm	-119.0 dBm

Modulation Fidelity Test

Result	Frequency	Mod Fi	Max Limit
Pass	762.0125 MHz	0.6 %	5.0 %
Pass	768.9875 MHz	0.6 %	5.0 %
Pass	776.0125 MHz	0.7 %	5.0 %
Pass	793.9875 MHz	0.9 %	5.0 %
Pass	805.9125 MHz	0.5 %	5.0 %
Pass	806.0125 MHz	0.4 %	5.0 %
Pass	823.9875 MHz	0.9 %	5.0 %
Pass	851.0125 MHz	0.7 %	5.0 %
Pass	860.0125 MHz	0.9 %	5.0 %
Pass	869.8875 MHz	0.7 %	5.0 %

Symbol Deviation Test

Result	Frequency	Symbol Dev	Min Limit	Max Limit
Pass	762.0125 MHz	1772.9 Hz	1620 Hz	1980 Hz
Pass	768.9875 MHz	1772.4 Hz	1620 Hz	1980 Hz
Pass	776.0125 MHz	1743.0 Hz	1620 Hz	1980 Hz
Pass	793.9875 MHz	1771.1 Hz	1620 Hz	1980 Hz
Pass	805.9125 MHz	1773.3 Hz	1620 Hz	1980 Hz
Pass	806.0125 MHz	1772.5 Hz	1620 Hz	1980 Hz
Pass	823.9875 MHz	1774.2 Hz	1620 Hz	1980 Hz
Pass	851.0125 MHz	1774.3 Hz	1620 Hz	1980 Hz
Pass	860.0125 MHz	1771.5 Hz	1620 Hz	1980 Hz
Pass	869.8875 MHz	1775.3 Hz	1620 Hz	1980 Hz

P25 Phase II Modulation Fidelity Test

Result	Frequency	Mod Fi	Max Limit
Pass	762.0125 MHz	0.7 %	5.0 %
Pass	768.9875 MHz	0.8 %	5.0 %
Pass	776.0125 MHz	1.0 %	5.0 %
Pass	793.9875 MHz	0.9 %	5.0 %
Pass	805.9125 MHz	0.9 %	5.0 %
Pass	806.0125 MHz	0.8 %	5.0 %
Pass	823.9875 MHz	0.9 %	5.0 %
Pass	851.0125 MHz	0.9 %	5.0 %
Pass	860.0125 MHz	0.8 %	5.0 %
Pass	869.8875 MHz	0.9 %	5.0 %

P25 Phase II Symbol Deviation Test

Result	Frequency	Symbol Dev	Min Limit	Max Limit
Pass	762.0125 MHz	2926.2 Hz	2842 Hz	3141 Hz
Pass	768.9875 MHz	2920.5 Hz	2842 Hz	3141 Hz

AutoTune for Motorola APX Series Radios User Guide

```
Pass 776.0125 MHz 2921.8 Hz 2842 Hz 3141 Hz
Pass 793.9875 MHz 2918.1 Hz 2842 Hz 3141 Hz
Pass 805.9125 MHz 2915.8 Hz 2842 Hz 3141 Hz
Pass 806.0125 MHz 2919.4 Hz 2842 Hz 3141 Hz
Pass 823.9875 MHz 2924.4 Hz 2842 Hz 3141 Hz
Pass 851.0125 MHz 2919.3 Hz 2842 Hz 3141 Hz
Pass 860.0125 MHz 2919.5 Hz 2842 Hz 3141 Hz
Pass 869.8875 MHz 2927.0 Hz 2842 Hz 3141 Hz

Rx Digital Sensitivity (P25 BER) Test
=====
Result Frequency Bit Error Count 5% BER Max Limit
----- ----- ----- ----- -----
Pass 762.0625 MHz 184 -122.7 dBm -119.0 dBm

Rx Sensitivity (P25 Phase II BER) Test
=====
Result Frequency Bit Error Count 5% BER Max Limit
----- ----- ----- ----- -----
Pass 762.0625 MHz 594 -122.4 dBm -119.0 dBm

Voice Modulation (internal) Test
=====
Result Frequency Deviation Min Limit Max Limit
----- ----- ----- ----- -----
Pass 762.0125 MHz 2.2 kHz 2.1 kHz 2.5 kHz

Tests performed by AutoTune © 2023 Astronics Test Systems. All Rights Reserved.
```

Figure A-1. Sample Test Result Report

APPENDIX B. Revision History

D-Supported Models, ATS	M. Mullins	4/8/24	M. Hammer	5/1/24	0439
See ECO – Rev C	M/Mullins	9/8/2021	C. Cox	10/21/21	0384
1.18 Updates – Rev B	L. Shirey	1/26/15	M. Mullins	1/26/15	14473
Original Release – Rev A	B. Tanner	7/30/12	M. Mullins	7/30/12	12691
Rev. No/change	Revised By	Date	Approved By	Date	ECO#